

Version 2002-03-01

DSpace –

A Sustainable Solution for
Institutional Digital Asset Services –

Spanning the Information Asset Value Chain:

Ingest, Manage, Preserve, Disseminate

INTERNAL REFERENCE SPECIFICATION

Technology & Architecture

Michael J. Bass,
David Stuve,

Robert Tansley

Hewlett-Packard Company
Building 10-500 MIT

77 Massachusetts Avenue, Cambridge MA 02139
+1 617 253 6617

mick_bass@hp.com

Margret Branschofsky,
Peter Breton 1,

Peter Carmichael 2,
Bill Cattey,

Dan Chudnov,
Joyce Ng

Masssachusetts Institute of Technology

 Building 10-500 MIT
77 Massachusetts Avenue, Cambridge MA 02139

+1 617 253 xxxx

dspace-dev@mit.edu

1 Under contract to MIT
2 Under contract to MIT

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01

CONTENTS

1. AUDIENCE .. 1

2. TECHCHNOLOGY & ARCHITECTURE............. 1
2.1 PHILOSOPHY AND VALUES ... 1

2.1.1 Information-Centric ... 1
2.1.2 Pre-Competitive: Low Adoption Barriers........ 1
2.1.3 Suitable for Research 1
2.1.4 Use and Lead Standards 1
2.1.5 Sustainable ... 1

2.2 ARCHITECTURE OVERVIEW.. 2
2.2.1 Three-Layer Architecture................................. 2
2.2.2 Data Model .. 3
2.2.2 Data Model .. 3
2.2.3 Relationship with OAIS.................................... 3

2.3 SUBSYSTEM DETAILS... 4
2.3.1 Relational Database... 4
2.3.2 Bitstream storage ... 4
2.3.3 Persistent Naming .. 4
2.3.4 Personal Workspaces 4
2.3.5 Workflow .. 4
2.3.6 Index & Search... 5
2.3.7 Browse.. 5
2.3.8 People & Groups.. 5
2.3.9 Authorization & Policies.................................. 5
2.3.10 History.. 5
2.3.11 Logging .. 5
2.3.12 User Interface... 5
2.3.13 Import/Export... 6
2.3.14 DSpace "Public" API 6
2.3.15 Dissemination... 6

3. REFERENCES... 6

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 1

1. AUDIENCE
This document is intended to provide a technology and
architecture overview of the DSpace system. It is aimed at
individuals who wish to understand, evaluate, or provide
feedback on the technology and architecture choices that the
design team has made.

This document is intended to be the basis for more detailed
technical documents that detail the interfaces of each of the
components of the DSpace system architecture.

2. TECHCHNOLOGY &
ARCHITECTURE
2.1 Philosophy and Values
2.1.1 Information-Centric
We wish to construct a system that will enable the information
that the system deals with to outlive the system itself. It is an
overt expectation that information assets managed by the
DSpace system will outlive the current system, the current
implementation of components within the architecture, as well
as external implemented services that access and/or add value to
the corpus.

This means that historic silo-oriented views of information
living “inside” an asset management system will not be
sufficient. Assets will be used by many parties, each with
different world views, for many purposes. Systems and services
in the future will flow around existing information assets, and
standards-based mechanisms for access to those assets will need
to be a part of the web infrastructure.

2.1.2 Pre-Competitive: Low Adoption Barriers
DSpace is pre-competitive. Because in the long-term we wish to
increase the baseline capabilities for information asset
management in the web infrastructure, we must be committed to
DSpace being both useful and adoptable by many institutions.
Low adoption barriers and a focus on providing useful
functionality will provide the grounding use cases, quick
feedback, and a channel for widespread and visible deployment
of demonstrated results.

To ensure that adoption barriers remain low, HP and MIT have
agreed to license all software produced within the joint project
with an open-source, BSD license.

Further, where third-party components are incorporated into the
DSpace system, we strive to choose components that are freely
available under similar terms.

2.1.3 Suitable for Research
In addition to DSpace being useful to those institutions that
adopt and use it, we are committed to DSpace as a useful vehicle
for research. As we have designed the initial DSpace system we
have in most cases chosen to keep the footprint of the system as
small as possible while still meeting the needs of early adopter
customers. This small footprint keeps the barriers to
experimentation low.

We expect that as a result of future research, some components
of the architecture will be replaced, enhanced, or subsumed in
various ways, as we explore different techniques and toolkits

that enable a lower long-term cost-of-management and a higher
long-term value for a very large corpus of information.

2.1.4 Use and Lead Standards
Because the system must be information-centric, we are
committed to using relevant standards for creating, describing,
and accessing information and information assets.

In many cases there is no clear standard, or existing standards
are not yet mature. In these cases we hope to test, inform, and
influence the development of useful and appropriate standards.

2.1.5 Sustainable
A core part of the DSpace value proposition is enabling
institutions with a sustainable ability to retain information assets
and offer services upon them. This means that economic and
social consideration must come must be considered with as
much weight as technical considerations in evaluating alternative
directions for the project.

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 2

2.2 Architecture Overview
2.2.1 Three-Layer Architecture

The DSpace platform is separated into three distinct layers, as
illustrated below. From the bottom up, these layers are the
storage, business logic and service layers.

Workflow

Content
Management

API

DSpace In-Process Application Interface

Web UIWeb Service Interface Federation Services

E-Person/
Group Manager

Authentication

Authorisation

Provenance,
History,
Logging

RDBMS Bit Storage

Storage Interface

Search
(Lucene
wrapper)

Browse

Handle Manger

Business
Logic Layer

Administration
Toolkit

DSpace System Architecture

The lowest layer is the storage layer. This presently consists of a
relational database for storing metadata and a “bitstream”
storage module for storing content data. Each of these has an
API accessible to the business logic layer. The union of these
APIs comprises the storage interface.

The central layer contains the modules that perform the business
logic of the system. The diagram above displays the internal
plumbing between these modules. Each module has a “public”

API. The union of these APIs comprises the DSpace “in-process
application interface.” It is on this API that services such as the
Web user interface and future interoperability and federation
services are built.

The top layer of the Dspace platform is the services layer. At
present, the only implemented service is the Web user interface,
though an Open Archives Initiative metadata harvesting protocol
service is to be added shortly.

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 3

2.2.2 Data Model
Content and metadata in DSpace are logically organized into the
simple data model illustrated below.

DSpace Logical Data Model

• Content in DSpace is at the highest level organized
into communities. These correspond to organizational
bodies in an institution, such as departments, labs,
research centers or schools.

• A community is organized into collections of
logically-related material. For example, a technical
report series might be a collection.

• An item is an “archival atom”; that is, a grouping of
content and metadata that it makes sense to archive as
a single unit. This may take the form of a journal
article, a dataset, or perhaps a technical report together
with a dataset used in experiments described by the
report. Precisely what constitutes an archival atom is
largely a policy-driven decision.

• Each item has one Dublin Core metadata record.
Other metadata might be stored in an item as a
serialized bitstream, but we store Dublin Core for
every item for interoperability and ease of discovery.
The Dublin Core may be entered by end-users as they
submit content, or it might be derived from other
metadata as part of an ingest process.

• The content of items, and any serialized metadata, are
stored in bitstreams. These are organized into
bundles of closely tied bitstreams. For example, an
item might contain a dataset in flat text file, and a
technical report in an HTML document. The dataset
text file would be stored in one bundle, and the HTML
files and associated image files that make up the
technical report would be grouped together in another
bundle. We use the METS[1] metadata standard to
store the relationships between bitstreams in a bundle.

• Each bitstream is linked to one bitstream format.
This is a set of information, maintained by the
institution running the archive, describing as much as

we know about the format and encoding of the
bitstream, including MIME type and name of the type
(e.g. “Adobe PDF”). This may also hold information
such as the specification of the format, and source
code for manipulating the format. Each format
additionally has a “support level”, indicating how well
the hosting institution is likely to be able to preserve
content in the format in the future.

The relationships between communities, collections, items,
bundles and bitstreams may all be many-many. This is because
it is unlikely that all material in DSpace will be organized in a
strict hierarchy. Duplication of content or objects should be
avoided, since apart from inefficiency of storage, rights
management information, such as distribution and access
policies, needs to be uniformly applied to a piece of content
wherever it appears in DSpace.

2.2.3 Relationship with OAIS
DSpace is deeply informed by the Open Archival Information
Systems (OAIS) reference model[1]. The OAIS reference model
provides a thorough vocabulary for describing media archive
systems, and for crosschecking the functional and operational
plans for a proposed archive. Where possible, DSpace adopted
the OAIS model and vocabulary to articulate DSpace design
objectives and terminology.

At a high level, several mappings from the OAIS model to
DSpace may be particularly informative: First, in OAIS
"producers" submit information to an "archive", which provides
access to "consumers" who comprise the "designated
community" of an archive. In DSpace, producers are primarily
MIT faculty and their designates; the primary designated
community is all of MIT, and a secondary designated
community is made up of academic researchers world-wide.
The DSpace platform will provide the tools for the MIT

communityCommunity

collectionCollection

itemItem

bundleBundle

bitstreamBitstreambitstream
format

Bitstream
Format

m
m
m
m

m
m
m
m

m
m
m
m

m
m

itemDC Record

1 m

1 1

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 4

Libraries to administer the archive, as well as to accept
submissions from producers and allow access appropriately to
our communities. These distinctions, also indicated in the OAIS
separation of "submission", "archival", and "dissemination"
"information packages", are shaping our development and
implementation efforts by the clear boundaries between tools
and processes the OAIS defines for each.

Another element of the OAIS model as adopted by DSpace is the
OAIS concept of an "information object", made up of a "data
object" and its "representation information". The DSpace team
is currently defining internal and external specifications, which
address the concerns motivating the distinctions between these
within OAIS, and believes that these distinctions are critical
concerns for the success of the project.

2.3 Subsystem Details
2.3.1 Relational Database
We chose to use a relational database management system
(PostgreSQL) to manage data in DSpace for several reasons.
First, DSpace captures a great deal of information about
relationships between users, content, user groups, and content
groupings. These naturally fit the relational model. Second, this
information can change regularly, particularly as content and
users are added to the system, so database updates need to be
transactionally safe according to the ACID model to maintain
the integrity of relationships across changes. Finally, SQL
provides a straightforward and well-known query environment
which suits nearly all our needs for searching, browsing, access
control, and user management.

We chose PostgreSQL because it addresses these concerns as an
ACID-compliant relational database engine, including a SQL92
implementation. Additionally, because PostgreSQL is
distributed with an Open Source license, there are no barriers to
our development in running multiple instances, or to anyone
wishing to codevelop or implement DSpace elsewhere. The
availability of PostgreSQL on many platforms further reinforces
its wide availability and low-barrier adoption requirements to
future DSpace users or developers.

2.3.2 Bitstream storage
The goals of the bitstream storage system are to provide a simple
API for pluggable low-level storage (e.g., as flat files, database
BLOBs, WebDAV, etc) and to enable adaptive, negotiated
storage and retrieval. Both storage and retrieval are policy-
driven, so that different types of bitstreams (e.g., streaming
audio or video) can use different storage mechanisms. This
usage is transparent to the clients of the storage system.

The current implementation of the bitstream storage system is
fairly simple. Clients access bitstreams via a Bitstream Storage
Manager, which provides a high-level API to store, fetch and
delete bitstreams (note that bitstreams cannot be modified in-
place via the API). The Bitstream Storage Manager uses the
database to store metadata about the bitstreams and to provide a
limited transactional capability for bitstreams. Internally, the
Bitstream Storage Manager delegates the actual store, fetch and
delete operations to storage components, which handle the low-
level storage details. As shipped, DSpace uses a single storage
component, which stores all data in the file system.

2.3.3 Persistent Naming
Researchers require a stable point of reference for their works.
The simple evolution from sharing of citations to emailing of
URLs broke when Web users learned that sites can disappear or
be reconfigured without notice, and that their bookmark files
containing critical links to research results couldn't be trusted
long term. To help solve this problem, a core DSpace feature is
the creation of persistent URLs for every item stored in DSpace.
To persist URLs, DSpace requires a storage- and location-
independent mechanism for creating and maintaining URLs.

Currently DSpace uses the CNRI Handle System[3] for creating
these URLs. We run the CNRI Handle Server, which offers
generic URL redirection across the naming authority and name
resolution mechanisms maintained centrally by CNRI. Our
implementation of Handles uses a DSpace-specific storage
mechanism, so Handle information is stored inside DSpace,
rather than the default external storage provided. These fit
together when a new item is submitted to DSpace: A new
Handle/URL is assigned to that item, and is displayed
prominently to the submitter and to anyone browsing that item
later. When anyone browses to the Handle URL later, the URL
passes through the main CNRI Handle server, which redirects to
the DSpace Handle server, which looks up the item inside
DSpace and displays the item. This model allows us to revise
our internal mechanisms for retrieving items in the future should
we so need, as well as physically move content, without
compromising researchers' bookmarks.

2.3.4 Personal Workspaces
A large component of the DSpace project is to do with the
submission of content to the archive. Submission is not a
simple, one-shot interaction; the Web user interface guides the
user through submission via an interactive series of steps.
Additionally, a user may start submitting one item, decide to
postpone, and in the meantime wish to submit another, separate
item. Other submission mechanisms might have similar
characteristics. To enable this functionality, DSpace allows
each user (“e-person”) to have a “personal workspace” in which
incomplete submissions may be stored and worked on.

When the user starts a submission, a fresh item is created in their
workspace. Metadata and content files are added to this item
until the user considers it complete, whereby they “commit” the
submission. In OAIS terms (see section 2.2.3), the user is
building up the Submission Information Package (SIP). When
the submission process is completed, the system initiates the
workflow associated with the collection the user submitted to. If
for some reason the submission is rejected from the collection,
or requires edits, it is returned to the user’s personal workspace
so they may perform the edits without having to restart from
scratch.

2.3.5 Workflow
After they are submitted, documents do not normally go directly
into the archive. Submissions will typically go through some
sort of editorial review where they can be reviewed, rejected, or
edited. We call that editorial review process a workflow. Each
collection within DSpace can have its own workflow to meet the
needs of its community.

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 5

Our workflow module is a simple state machine that tracks a
submission's state on its trip into the DSpace archive. The
workflow engine has a simple API to read and manipulate the
state of a submission, and it is capable of triggering events such
as email notification of the submission's state to members of
review teams and the submitter.

2.3.6 Index & Search
Search is an essential component of discovery in DSpace.
Users’ expectations from a search engine are quite high, so a
goal for DSpace is to supply as many search features as possible.

DSpace's indexing and search module has a very simple API
which allows for indexing new content, regenerating the index,
and performing searches on the entire corpus, a community, or
collection. Behind the API is the Java freeware search engine
Lucene[4]. Lucene gives us fielded searching, stopwords,
stemming, and the ability to incrementally add new indexed
content without regenerating the entire index.

2.3.7 Browse
Another important mechanism for discovery in DSpace is the
browse. This is the process whereby the user views a particular
index, such as the title index, and navigates around it in search
of interesting items. The browse subsystem provides a simple
API for achieving this by allowing a caller to specify an index,
and a subsection of that index. The browse subsystem then
discloses the portion of the index of interest. Indices that may
be browsed are item title, item issue date and authors.
Additionally, the browse can be limited to items within a
particular collection or community.

Currently this is implemented using SQL views and an SQL
function for removing leading articles in titles. For example, the
title “The DSpace Project” would be indexed under “D” and not
“T”. In this way, the indices are accessed dynamically. We do
not need to periodically or incrementally produce a static index.

2.3.8 People & Groups
Many of DSpace's features such as document discovery and
retrieval can be used anonymously, but users must be
authenticated to perform functions such as submission, email
notification, customized views, or administration. Users are also
grouped for easier administration.

DSpace calls users “e-people”, to reflect that some users may be
machines rather than actual people. E-people authenticate with
username/password pairs or X509 certificates. E-people can be
members of 'groups' to make administrator's lives easier when
manipulating authorization policies.

2.3.9 Authorization & Policies
DSpace has flexible rights management as a stated goal.
'Flexible' refers to the ability to control access to individual
digital objects (e.g. communities, collections, items and
bitstreams.) Policies could be defined to restrict access to an
object based on a user's identity, membership in a group of
users, a period of time of having elapsed, or having special
permission (such as making a micropayment.)

DSpace's authorization module works from a list of policies,
which detail an action, and who is allowed to perform that
action. Each object in the system can have its own policy entry,
but most will be inherited from the object's container. For

example, almost all of the items in a collection will have the
same set of policies for who can view them. The 'who' in the
policy statement can be individual users, groups of users, or
reference to a function that returns a Boolean (such as a function
needed to check an elapsed time period or receipt of payment.)

2.3.10 History
The goals of the history subsystem are to capture a time-based
record of significant changes in DSpace, in a manner suitable
for later refactoring or repurposing, and to provide a corpus of
data suitable for research by HP Labs and other interested
parties. Note that the history data is not expected to provide
current information about the archive; it simply records what has
happened in the past.

Currently, the History subsystem is explicitly invoked when
significant events occur (e.g., DSpace accepts an item into the
archive). The History subsystem then creates RDF data
describing the current state of the object. The RDF data is
modelled using Harmony/ABC, an ontology for describing
temporal-based data, and stored in the filesystem. Some simple
indices for unwinding the data are available.

2.3.11 Logging
To facilitate system administration, troubleshooting, and
debugging during development, DSpace uses a standard
mechanism for logging DSpace activity. Using the Apache
log4j logging toolkit, DSpace provides logging output at UNIX-
standard "debug, info, and warn" levels:

• "debug" information is verbose and of primary interest
during development;

• "info" messages encapsulate a DSpace-standard
format for reporting completion of significant DSpace
tasks (e.g. "submit item" or "approve item"), and ties
actions during a specific user's session together for
immediate or retrospective troubleshooting;

• "warn" messages record significant anomalies for
immediate or retrospective reporting and analysis.

Our implementation uses standard log4j settings for run-time
configuration of reporting levels (for instance, "debug" messages
are off by default) and message layout. Our server-side
configurations record messages to a regularly rotated file in a
standard DSpace directory. These files are readily available for
analysis using standard UNIX tools (grep, perl) or console-
based log monitoring tools (chainsaw).

Aside from DSpace-specific logging, we also use the standard
Apache, PostgreSQL, Resin, Handle System, and HP-UX
logging tools for efficient monitoring of those independent
server processes.

2.3.12 User Interface
Currently, the only available means for accessing the DSpace
system is via the Web user interface. The Web UI allows users
to view communities, collections and items, to perform searches
and browse indices, and to download and view content. It also
allows users to submit content and metadata, and to perform
workflow tasks, using a section of the UI known as “My
DSpace”. The user interface has been through a number of

DSpace Internal Reference Specification – Technology & Architecture

Version 2002-03-01 6

usability tests, particularly focused on the submission UI, since
this is the most complex part of the UI.

The Web UI is implemented using a Java Servlet engine,
Resin[5], with support for Java Server Pages. A combination of
Servlets and JSPs are used in a model-view-controller style.
Servlets receive incoming HTTP requests and handle the
processing and business logic, and these forward the request to a
suitable JSP for display. This means the JSPs are as close to
pure HTML as possible, making customization,
internationalization and error handling as simple as possible.

At present, due to tight development schedules, the user
interface code currently performs much of the business logic that
should be present in the business logic layer. One of the tasks
immediately facing the development team is separating out this
business logic such that other services can access this business
logic via the content management API.

2.3.13 Import/Export
As with any content management system, DSpace has the need
to import content, whether sharing content with another system
or assuming managment of legacy content. Other systems will
also want to interoperate with DSpace.

DSpace's import capability is currently done with an
intermediate file format for content, and an importer that can
place that content into the DSpace system. The format of legacy
content varies widely, so custom front-ends to convert the
content and metadata into DSpace's import format are done on a
case by case basis. DSpace plans on using OAI (Open Archives
Initiative[6]) to expose and share metadata with other systems.
Content export can be done with DSpace's import file-format.

2.3.14 DSpace "Public" API
As described above in section 2.2.1, each component in the
business logic layer has a “public” API, and the union of these

forms the DSpace in-process application interface. However,
this is not a truly “public” API – external applications will not
be able to use this API directly. This API is “trusted” – it is up
to the services in the service layer to ensure users are
authenticated. This is because authentication techniques will
vary greatly between services, and some services may use an
external authentication mechanism, such as a federation service
using a global access control list external to DSpace.

Access to the API will be enabled via the implementation of
services in the service layer. For example, a SOAP service could
allow remote access to and manipulation of DSpace content.

2.3.15 Dissemination
Using the terminology of the OAIS model (section 2.2.3), the act
of delivering content and/or metadata to a user is called
dissemination. The current version of DSpace has a very
simple approach to dissemination: Uploaded bitstreams may be
downloaded as-is. This works fine in a bounded environment,
such as a department all using similar Web-based computing
systems, and for a limited amount of time. However, in the long
term content needs to be accessible by a wider audience, who
may be using a wide variety of computing equipment.
Additionally, file interchange formats and standards, and
rendering software and hardware change over time. A method is
needed whereby a client’s capability for rendering media is
assessed, and an appropriate version or rendition of the content
is accessed or computed. Referring again to OAIS terminology,
we need to define mechanisms for obtaining appropriate
Dissemination Information Packages from the Archival
Information Package held within DSpace.

A number of methodologies for addressing this are under
review, including the FEDORA work[2], the Repository Access
Protocol (RAP), other Web Services work, and the work of the
Device Independence group in HP Labs.

3. REFERENCES

[1] CCSDS 650.0-R-2: Reference Model for an Open Archival Information System (OAIS). Red Book. Issue 2. June 2001

http://www.ccsds.org/documents/pdf/CCSDS-650.0-R-2.pdf

[2] Flexible and Extensible Digital Object and Repository Architecture (FEDORA):
http://www.cs.cornell.edu/cdlrg/fedora.html

[3] Corporation for National Research Initiatives. The Handle System. http://www.handle.net/

[4] Jakarta Lucene. http://jakarta.apache.org/lucene/docs/index.html

[5] Caucho Technology. Resin XML Application Server. http://www.caucho.com/

[6] The Open Archives Initiative. http://www.openarchives.org/

METS: Metadata Encoding and Transmission Standard. http://www.loc.gov/standards/mets/

