Introduction

- Domain generalization: learn a classifier from a set of training domains that generalizes to test domains.
- Prior work on domain-invariant representation learning minimizes the average risk across all domains $\{f_i\}$. The invariant classifier will not coincide with the pointwise-optimal classifier per domain. $\{f_1, f_2, \ldots, f_n\}$
- can we create a domain-specific adaptive classifier for domain generalization?

Our Approach

Learn an adaptive classifier F on both the input x and the domain D that x belongs to, by computing a kernel mean embedding φ of the domain D via samples. This involves 3 steps:

1. **Learning a good embedding**: To learn the embedding φ, we use a low-shot learning method called prototypical networks (see Figure A on the left) by predicting the domain identity from the inputs.
2. **Computing domain prototypes**: We average features from each domain to create the prototype $\Theta(D)$ for the training domain D.
3. **Learning an adaptive classifier**: Next we learn the adaptive classifier F over the input $(x, \varphi(D))$ that predicts the label y.

At test time, we use the first network to compute the domain prototype $\Theta(D)$ for each test domain D and predict using F.

- Is this transductive learning? No!
 - We do not assume knowledge of the test set in advance. Furthermore, we can do inference on each sample individually.
 - Is this incompatible with domain-invariant approaches? No!
 - We simply account for the domain information in the classifier. F can involve domain-invariant representation learning to improve performance, given the knowledge of the embedding (future work).
- Is this approach consistent? Yes!
 - (Convergence of $\varphi(D)$): Under suitable regularity assumptions, the empirical $\varphi(D)$ converges to the true embedding at a rate of $O(1/n^2)$.
 - (Generalization Error): The excess risk for a class f...diminishes at a rate of $\frac{\log N}{N} + \frac{1}{\sqrt{N}}$.

The GeoYFCC Dataset

GeoYFCC has 40 training, 7 validation and 15 test domains, with an overall 1.1M images and 1261 classes, and exhibits:
- domain shift, label shift, and long-tailed class distributions.