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Abstract

A methodology for interpreting instrumented sharp indentation with dual sharp indenters with different tip apex
angles is presented by recourse to computational modeling within the context of finite element analysis. The forward
problem predicts an indentation response from a given set of elasto-plastic properties, whereas the reverse analysis
seeks to extract elasto-plastic properties from depth-sensing indentation response by developing algorithms derived
from computational simulations. The present study also focuses on the uniqueness of the reverse algorithm and its
sensitivity to variations in the measured indentation data in comparison with the single indentation analysis on
Vickers/Berkovich tip (Dao et al. Acta Mater 49 (2001) 3899). Finite element computations were carried out for 76
different combinations of elasto-plastic properties representing common engineering metals for each tip geometry.
Young's modulusk, was varied from 10 to 210 GPa; yield strengtt), from 30 to 3000 MPa; and strain hardening
exponentn, from 0 to 0.5; while the Poisson’s ratie, was fixed at 0.3. Using dimensional analysis, additional closed-
form dimensionless functions were constructed to relate indentation response to elasto-plastic properties for different
indenter tip geometries (i.e., 5060° and 80 cones). The representative plastic strgiras defined in Dao et al. (Acta
Mater 49 (2001) 3899), was constructed as a function of tip geometry in the rangé ah8@®B0. Incorporating the
results from 60 tip to the single indenter algorithms, the improved forward and reverse algorithms for dual indentation
can be established. This dual indenter reverse algorithm provides a unique solution of the reduced Young’s modulus
E*, the hardnesp,.. and two representative stresses (measured at two corresponding representative strains), which
establish the basis for constructing power-law plastic material response. Comprehensive sensitivity analyses showed
much improvement of the dual indenter algorithms over the single indenter results. Experimental verifications of these
dual indenter algorithms were carried out using & B@lf-angle cone tip (or a 60cone equivalent 3-sided pyramid
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tip) and a standard Berkovich indenter tip for two materias: 6061-T6511 and 7075-T651 aluminum aloys. Possible
extensions of the present results to studies involving multiple indenters are also suggested.
[0 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Indentation; Representative strain; Dual indenter geometries; Mechanical properties; Finite element smulation

1. Introduction

Depth-sensing instrumented indentation, where
the indenter penetration force P can be continu-
ously monitored as a function of the depth of pen-
etration h into a substrate during both loading and
unloading, has been atopic of considerable experi-
mental and theoretical studies during the past two
decades (e.g., [1-15]). Methods to extract material
properties from instrumented indentation response
have been investigated in a number of studies (e.g.,
[1,4,6,12,13,16-23]).

The underlying theoretical framework of plastic
indentation dates back to the work by Hill et al.
[25], who developed a self-similar solution for
spherical indentation of a power law plastic
material. Extending such an approach to sharp
(Berkovich and Vickers) indentation, elastic—{las-
tic analyses of Berkovich and Vickers indentation
have been reported within the context of small-
strain finite element simulations [19,26]. Exten-
sions of these computational models included
attempts to extract elasto-plastic properties from a
single indentation load—displacement curve
[17,21,22]. With the application of dimensional
analysis to the computational results of large defor-
mation sharp indentation, correlations between ela-
sto-plastic properties and indentation response
have also been proposed for bulk [1,12,13,20] and
coated [24] material systems.

Our previous study [1] of instrumented inden-
tation involving a single sharp indenter established
a set of dimensionless functions, which took into
account the pile-up/sink-in effects and finite strain
beneath the indenter. These functions were used to
predict the indentation response from a given set
of elasto-plastic properties (forward algorithms),
and to extract the elasto-plastic properties from a
given set of indentation data (reverse algorithms).
A representative strain of £,=3.3% for a Berkovich

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

or Vickers indenter (equivalent to a 70.3° cone)
was identified with which the indentation loading
curvature could be normalized independently of
the material hardening exponent for a very wide
range of elasto-plastic properties. For most com-
mon metallic systems, a single set of elasto-plastic
properties was extracted from a single P-h curve.
The accuracy of the analysis, however, was found
to be sensitive to the small experimental errors [1].
Cheng and Cheng [20] and Venkatesh et al. [22]
discussed the uniqueness issue and presented a
number of computationally non-unique cases.

It is clear that two important fundamental issues
remain which require further investigation:

1. Uniqueness of the reverse analysis for the range
of material properties examined; and

2. The accuracy and sensitivity of the reverse
analysis.

In this paper, these issues will be addressed
within the context of dual sharp indentation, con-
tinuum analysis and experimental observations.

2. Framework for analysis
2.1. Problem formulation and nomenclature

Fig. 1(a) schematically shows the typical P-h
response of an elasto-plastic material to sharp
indentation. The loading response is governed by
Kick's Law,

P = cn L)

where C is the loading curvature. At the maximum
depth h,, the indentation load P, makes a pro-
jected contact area of A,,. The average contact
pressure is thus defined as pye = Pm/AL,, COM-
monly referred as the hardness of the indented
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P (Load)

=@

h (Depth) " m
Y
o=Rg"
o, |<
Ee, foro=o,
O- ....... — n
y Re", foro>0
< & Y
1 )81)
. E
Fig. 1. (a) Schematic illustration of atypica P-h response of

an elasto-plastic materia to instrumented sharp indentation. (b)
The power law elasto-plastic stress—strain behavior used in the
current study.

material, in accordance with the standard for com-
mercially available indenter. Upon unloading, the

u

ah h , Where
P, is the unloading force. At the complete
unloading, the residua depth is h,. The area under
the loading portion is defined as the total work W;;
the area under the unloading portion is defined as
the recovered elastic work W, and the area
enclosed by the loading and unloading portions is
defined as the residua plastic work W, = W,—W..

Fig. 1(b) schematically shows the typical stress—
strain response of power law material, which, to a
good approximation, can be used for many pure
and alloyed engineering metals. The elasticity fol-

initial unloading slope is defined as

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

lows Hook’s law, whereas the plasticity follows
von Misesyield criterion and power law hardening.
True stress and true strain are related via the fol-
lowing equation:

2

{Es for =0,
G =
Re" for o>o0,

where E isthe Y oung’s modulus, R a strength coef-
ficient, n the strain hardening exponent and o, the
initial yield stress at zero offset strain. In the plastic
region, true strain can be further decomposed to
strain at yield and true plastic strain: € = g, + &,.
For continuity at yielding, the following condition
must hold.

o, = Ee, = Re) ©)
Thus when ¢ > o, Egs. (2) and (3) yield

E n
0'=0'y1+;£p : 4
y

A comprehensive framework using dimensional
analysis to extract closed form universal functions
was developed earlier [1]. A representative plastic
gtrain &, was identified as a strain level which
allows for the construction of a dimensionless
description of indentation loading response, inde-
pendent of strain hardening exponent n; £=3.3%
for Berkovich, Vickers or 70.3° apex-angle cone
tip. It was aso found that for most cases, three
dP, q h,
| T h,

obtained from a single P—h curve are sufficient to
uniquely determine the indented material’s elasto-
plastic properties under certain ranges of validity
(see Table 6 of [1]). Although the estimation of o,
and n in certain ranges could be prone to consider-
able sensitivity from a variation in these three P—
h characteristics (see Table 7 of [1]), a reverse
analysis agorithm proposed in [1] predicts stress
at representative strain, 0g g3, robustly.

It is expected that, with different indenter geo-
metries (i.e., different apex angles), the representa-
tive strain would be different (e.g., £=¢.(0)). In
fact, a +2° variation in apex angle can result in a
+20% change in loading curvature C (see Fig. 12
of [1]). This observation suggests a possibility of

independent quantities—C,
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determining o, and n more precisely using dual
indenter geometries (two representative stresses).
An additional representative stress ¢, can be ident-
ified from a loading curvature of a P-h curve using
a second indenter of which its tip geometry is dif-
ferent from Berkovich/Vickers. The question
remains whether two P-h curves from two differ-
ent indenter tips can yield unique solution for a
broader range of material’ s elasto-plastic properties
with improved accuracy than previously demon-
strated with a single indentation.

2.2. Dimensional analysis and universal
functions

For a sharp indenter of apex angle 6, the load
required to penetrate into a power law elasto-plas-
tic solid (E, v, oy, and n) can be written as

P = P(h,E*,Gy,n,G), 5)
where

1-v2  1-v?| 1
£ _[ e ] ©)

is reduced Young's modulus, commonly intro-
duced [27] to include elasticity effect (E;, v;) of
an elastic indenter. Define o, as the stress at the
representative strain ¢, in Eq. (4); Eqg. (5) can be
rewritten as

P = P(h,E*,0,,n,0) (7

Using dimensional analysis, Eq. (7) becomes

E*
P = Grh2H19<G,n,9), (8a)
and from Eq. (1),
P E~
C - ﬁ - Grl—llg<o_r,n,6>. (8b)

where I1,, is a dimensionless function.

A complete set of universal dimensionless func-
tions for a single indenter is listed in Appendix A
(Egs. (A.1)(A.6)) for an apex angle of 70.3°
(Berkovich and Vickers equivalent). In the current
study, I1,, functions at different apex angles (e.g.,
50°, 60° or 80°) will be constructed. The original
algorithmsin [1] can be modified to accurately pre-

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

dict the P-h response from known elasto-plastic
properties (forward agorithms) and to systemati-
cally and uniquely extract the indented material’s
elasto-plastic properties from two sets of P-h data
of two different indenter geometries (reverse
algorithms).

2.3. Computational model

It is generally known that an axisymmetric two-
dimensiona finite element model can be used to
capture the result of afull three-dimensional model
as long as the projected area/depth of the two mod-
els are equivalent. Computations were performed
using the general purpose finite element package
ABAQUS [28]. Fig. 2(a) schematically shows the
conical indenter, where

6 = the included half angle of the indenter

h.,= the maximum indentation depth

a,= the contact radius measured at hy,

A= the true projected contact area with pile-up or
sink-in effects taken into account.

For both Berkovich and Vickers indenters, the
corresponding apex angle 0 of the equivalent cone
was chosen as 70.3°. Fig. 2(b) shows the mesh
design for the axisymmetric analysis. The indented
solid spanned over a hundred times contact radius
to ensure semi-infinite boundary condition. The
model comprised of 8100 four-noded, bilinear axi-
symmetric quadrilateral elements with a fine mesh
near the contact region and a gradualy coarser
mesh further away to ensure numerical accuracy.
At the maximum load, the minimum number of
contact elements in the contact zone was no less
than 12 in each FEM computation. The mesh was
well-tested for convergence and was determined to
be insensitive to far-field boundary conditions. In
al finite element computations, the indenter was
modeled as a rigid body; the contact was modeled
as frictionless; and large deformation FEM compu-
tations were performed.

2.4. Comparison of experimental and
computational results

Two auminum aloys (6061-T6511 and 7075-
T651) were prepared, as described elsewhere [1],
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Conical
| Indenter

Aid Indenter

material

L
I
[LLALALLY

(2) D

(b)

Fig. 2. Computational modeling of instrumented sharp indentation. (a) Schematic drawing of the conical indenter, (b) mesh design

for axisymmetric finite element calculations

for indentation using a Berkovich tip and a second
indenter tip with different geometry. The speci-
mens were indented on a commercia nanoindenter
(MicroMaterias, Wrexham, UK) with the Berkov-
ich, 60° cone and 60° cone equivalent 3-sided
pyramid® at a loading/unloading rate of approxi-
mately 4.4 N/min. For the Berkovich tip, the
maximum loads for both aluminum aloys were 3
N with a repetition of six tests. For the other two
indenter tips, the Al6061-T6511 specimens were
indented to 1.8 and 2.7 N with a repetition of 3
and 10 tests, respectively; whereas the Al7075-
T651 specimens were indented to 3 N with a rep-
etition of six tests. From all the tests, the data were
repeatable. For comparison with the single inden-
tation results, the Berkovich indentation data of
Al6061-T6511 specimens examined in the current
study were taken directly from [1].

Fig. 3 shows the typical indentation response of
the 6061-T6511 aluminum specimens under
Berkovich and 60° cone indenter tips, superim-
posed with the corresponding finite element com-
putations. Fig. 4 shows the same for the 7075-T651
aluminum. Using experimental uniaxial com-
pression (see Fig. 4 of [1]) as an input for the
simulation, the resulting P-h curves agree well

1 The 60° cone equivalent 3-sided pyramid is designed such
that its projected contact area/depth equals to that of 60° cone.

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

6061T6511 Al

—— Experiment (Berkovich)
—* FEM Prediction

P (N)

— Experiment
(60-degree cone)
~®-FEM Prediction |

h (um)

Fig. 3. Experimental (Berkovich and 60° cone tips) versus
computational indentation responses of both the 6061-T6511
aluminum specimens.

with the experimental curves, as demonstrated in
Figs. 3 and 4.

3. Computational results

A comprehensive parametric study of 76 cases
was conducted (see Appendix B for acomplete list
of parameters) representing the range of para
meters of mechanical behavior found in common
engineering metals. Vaues of Young's modulus E
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7075T651 Al

— Expeniment (Berkovich)
—*= FEM Prediction

Experiment
(60-degree cone)

® FEM Prediction

h {(pm)

Fig. 4. Experimental (Berkovich and 60° cone tips) versus
computational indentation responses of both the 7075-T651
aluminum specimens.

ranged from 10 to 210 GPa, yield strength o, from
30 to 3000 MPa, strain hardening exponent n from
0 to 0.5, and Poisson’s ratio v was fixed at 0.3.
The axisymmetric finite element model was used
to obtain computational results, unless otherwise
specified.

The dimensionless functions I1,, for different
apex angles (e.g., 50°, 60° or 80°) were constructed
in addition to the Il,, function at 70.3° angle
(Berkovich and Vickers equivalent) presented earl-
ier [1]. It is noted that the apex angle of 60° is
commonly used in commercia indenters for scan-
ning the surface profile or performing indentation
tests. The second indenter tip geometry is chosen
to be 60° cone.

3.1. Representative strain and dimensionless
function II, as a function of indenter geometry

The first dimensionless function of interest is
I1,, in Eqg. (8ab). Using subscript “a” to denote
6 = 70.3° in EQ. (8ab), it follows that

E* Ca
Hla<,n,9 = 70.3°) = 9)

ra ra

It was found in [1] that for 6 = 70.3° a representa-
tive strain of 0.033 could be identified, such that a

fitsal 76

olynomial function IT () =—=
poty 1 00.033 00.033

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

data points within a £2.85% error (see Appendix
A for acomplete listing of the function). It isworth
noting that the corresponding dimensionless func-
tion I1,, normalized with respect to 0yg33 Was
found to be independent of the strain hardening
exponent n.

Following the same procedure, one can identify
the I1,, functions with different apex angles (i.e.,
different tip geometries). Three additional angles
were studied here. For 6 = 60°, a representative
strain of 0.057 could be identified, where a closed-

b .
60.057) Oo.057 (52 Spradix
A for a complete listing of the function) fits all 76
data points within a *2.51% error; here the
subscript “b” is used to denote the case for 6 =
60°. For 6 = 80°, a representative strain of 0.017
could be identified, where a closed form function

form function H1b<

E* C. .
H1C< ) = (see Appendix A for a com-
00.017 O00.017

plete listing of the function) fits all 76 data points
within a £2.71% error; here the subscript “c” is
used to denote the case for 6 = 80°. For 6 = 50°,
arepresentative strain of 0.082 could be identified,

. E* C
where a closed-form function Hm() =

Oo0.082 00.082
(see Appendix A for a complete listing of the
function) fits all 76 data points within a +2.49%
error; here the subscript “d” is used to denote the
case for 6 = 50°. The representative strain can be
correlated with the half tip angle viaasimple linear
function (see Fig. 5(a)).

£(0) = —2.185 X 103%0
+0.1894 for 6 in degree

(10a)

or a more accurate quadratic function, within
+1.63% error,

&(0) = 2.397 X 107%6>—5.311 X 103%0
+0.2884 for 6 in degree

(10b)

To extend the capability of the present dual
indentation algorithm, the choice for the second
indenter geometry can be chosen between 50° and
80°. By correlating the coefficients in Egs. (A.1),
(A7), (A8) and (A.9 with apex angle 0,
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9%

o gop A(50% 82%)
£ =
58 0 \\\" (60°, 5.7%)
w -~ °, 5.7%
o % 6% e
= c 5% ~o
ES 49 ~ _ (70.3°, 3.3%)

]

uu?: 5 o A~
ez 3% s =A0+B ~o
£ E 0, ~
€ g 2% 2 ~A

S R°=0.9923 (800, 1.7%)

0%
50 60 70 80

(a) Tip Half Angle (degree)

Clor

0 100 200 300 400 500 600 700 800

(b) E*lo,
Fig.5. (a) A relationship between representative strain and

indenter apex angle. (b) A generalized dimensionless function
T, for 6 = 50°, 60°, 70.3° and 80°.

E* C .
H19<G’9> = 6—" (see Appendix A for a complete

listing of the function) fits al 4 x 76 = 304 data
points within a £3% error, as shown in Fig. 5(b).

3.2. Forward analysis algorithms

In the following sections, the dual indenter geo-
metries of the 70.3° and 60° pair are examined.
The forward analysis leads to prediction of the P—
h response from known elasto-plastic properties.
Following the procedure outlined in [1], an
updated forward analysis algorithm for generalized
dua indentation is shown in Fig. 6. The complete
prediction of P-h response can be readily con-
structed for 6 = 70.3° using dimensionless func-
tions 11,, to Ils, while the prediction of loading
curvature can be obtained for any 6e<[50°,80°]
using I1,,.

To verify the accuracy of the proposed algor-
ithms, uniaxial compression and Berkovich inden-

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

tation experiments were conducted in two well-
characterized materials: 6061-T6511 aluminum
and 7075-T651 aluminum (see Fig. 4 of [1]).
Additional indentation experiments using a differ-
ent tip geometry (either a 60° cone or an equivalent
3-sided pyramid) were performed on both 6061-
T6511 and 7075-T651 aluminum samples. The
mechanical property values used in the forward
analysis were obtained directly from Table 3 of [1],
where (E, v, oy, n) are (66.8 GPa, 0.33, 284 MPa,
0.08) and (70.1 GPa, 0.33, 500 MPa, 0.0122) for
Al6061-T6511 and AI7075-T651, respectively.
Tables 1-3 list the predictions from the forward
analysis (using 11, to Ils, and II,;) for 6061-
T6511 aluminum specimens, along with the values
extracted from the Berkovich indentation, the 60°
cone indentation, and the 60° cone equivalent 3-
sided pyramid indentation experiments, respect-
ively. Tables 4 and 5 list the predictions from the
forward analysis (using 11, to Ils, and II,,) for
7075-T651 auminum specimens, along with the
values extracted from the Berkovich indentation
and the 60° cone equivaent 3-sided pyramid
indentation experiments, respectively. From Tables
1-5, it is evident that the present forward analysis
results are in good agreement with the experi-
mental P—h curves.

3.3. Reverse analysis algorithms

Since a single P—h curve is sufficient for esti-
mation of the elasto-plastic properties, the use of
two complete P—h curves would give redundant
information. Therefore, there are many possible
ways to construct the reverse analysis agorithm;
however, the most reliable path is presented here.
The proposed reverse algorithm utilizes a complete
P—h curve obtained under Berkovich or Vickers
indenter and a loading portion of a second P-h
curve under a conica indenter of apex angle
6 €[50°,80°] (or its equivalent 3-sided pyramid). In
the present study, 6 = 60° is chosen. The dimen-
sionless functions I1,, to Ils, and I1,, allow us to
construct an improved reverse agorithm. A set of
the dual indentation reverse analysis algorithms is
shown in Fig. 7.

To verify the dual indentation reverse agor-
ithms, six Berkovich indentation curves shown in

22-05-03 10:14:08 Rev 16.04x AM$$$$294P
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Forward Problem: E, n, o, v, § T——> C,, Cy, b, Do dr, ,E
set P dh h, w
or i,

£ =£{6)

4

H
E
0,033 ‘(’y{“ U—yo.(m] —— Obtain gy,

v

E*
G =033 » Obtain C
0033 [00.033J S
— 2
'Set hm or Pm (Pm . Chm)
danl _g* E dP
= =EhTL, | — AR AL
B [5’0_033 } Obtan. & h
A
1 df .
@zc.g*%h —® Obtain 4
Y Pave
Poe _11 [ 12
_E*—_H““{Tz:] » Solve for ;:‘—
A
"on(h . W,
' H&[;,‘J »  Obtain WF

|

1
E
O =0y 1+—¢, —» Obtaino
' { . ] %
F*

G= ogrnm

o 0} ——— Obtain C,

Fig. 6. Dual indentation forward analysis algorithms.

Table 1 and three 60° cone indentation curves
shown in Table 2 from 6061-T6511 auminum
specimens were first analyzed (using I1,, to Ilg,
and II,,). Table 6 shows the dual indentation
results, along with the single indentation results
from [1]. In the reverse analyses, each case com-
prises one set of Berkovich indentation parameters
shown in Table 1 and an average loading curvature
C, shown in Table 2 for the 60° cone indentation.

Additiona verification for the dual indentation
algorithms was performed on 7075-T651 aumi-
num specimens. Six Berkovich indentation P-h
curves shown in Table 4 and six 60° cone equival-
ent 3-sided pyramid indentation curves shown in
Table 5 were analyzed (using 11, to Ils, and

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

I1,,). Table 7 shows the dual indentation results,
along with the single indentation results. In the
reverse analyses, each case comprises one set of
Berkovich indentation parameters shown in Table
4 and an average loading curvature C, shown in
Table 5 for the 60° cone equivalent 3-sided pyra-
mid indentation.

According to the flow chart shown in Fig. 7, the
predictions of E* and o433 by the dual indentation
algorithm should yield the similar accuracy to
those by the single indentation algorithm.

From Tables 6 and 7, it is clear that the proposed
reverse algorithms yield accurate estimates of
Oo.033 Oo0s7 and E*, and give reasonable estimates
of o, (especially after taking an average from the
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Table 1

Forward analysis on Al 6061-T6511 for Berkovich indentation experiments (max. load = 3 N) [1]

- 0, a 0,
Al 6061-T6511 C, (GPa) Yerror C2 dP, (kN/m) . dP, W,/ W, Yoerror W,/ W,
dh dh
h, h,
Test Al 274 -16 4768 16 0.902 0.8
Test A2 28.2 12 4800 2.3 0.905 12
Test A3 27.2 —24 4794 22 0.904 11
Test A4 27.3 —-22 4671 —-04 0.889 —0.6
Test A5 27.0 -32 4762 15 0.889 -0.6
Test A6 27.6 -09 4491 —4.2 0.891 -04
Average 274 4715 0.896
Forward prediction 27.9 4691 0.894
(assume v = 0.33 and
Berkovich cx)
STDEV® 0.6 110.9 0.007
STDEV/Xprediction 2.1% 2.4% 0.8%

@ All errors were computed as Xieq — Xprediction! Xpredicions Where X represents a variable.

1 .
b STDEV = \/ NZ‘N= 1(Xiest— Xorediction)?s Where X represents a variable.

Table 2
Forward analysis on Al 6061-T6511 for 60° cone experiments
(max. load = 1.8 N)

Table 3
Forward analysis on Al 6061-T6511 for 60° cone equivalent 3-
sided pyramid indentation experiments (max. load = 1.8 N)

Al 6061-T6511 Cy, (GPa) %error Cp? Al 6061-T6511 C, (GPa) %error C,2
Test Blc 11.27 0.0 Test Blp 12.03 6.8

Test B2c 11.23 —-04 Test B2p 11.39 11

Test B3c 11.32 0.5 Test B3p 11.97 6.2
Average 11.27 Average 11.80

Forward prediction (60° 11.27 Forward prediction (60° cone 11.27

cone) equivalent 3-sided pyramid)

STDEV® 0.04 STDEVP 0.60

STDEV/Xprectction 0.3% STDEV/Xyrectction 5.4%

a All errors were computed as Xies — Xprediction! Xpredictions Where
X represents a variable.

1
b STDEV = \/ NZP‘: 1(Xiest— Xprediction)®, Where X represents

a variable.

six indentation results), which agree well with
experimental uniaxial compression data. It is noted
that changing the definition of o, to 0.1% or 0.2%
(instead of 0%) offset strain would not affect the
conclusions. According to the flow chart shown in
Fig. 7, the improvement of the dual indentation
algorithm over the single indentation agorithm
reflects upon yield strength (and consequently

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

a All errors were computed as Xes — Xprediction! Xprediction, Where
X represents a variable.

1
b STDEV = \/ NZP‘: 1(Xies = Xprediction)?, Where X represents

avariable.

strain hardening exponent) estimation, as clearly
illustrated by comparing the first and last columns
in Tables 6 and 7. This improved calculation of
plastic properties is likely due to the fact that the
second indenter geometry results in more accurate
estimations of the second representative stress
Oo.0s7 & 5.7% plastic strain in addition to the rep-
resentative Stress 0y s; at 3.3% plastic strain.
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Forward analysis on Al 7075-T651 for Berkovich indentation experiments (max. load = 3 N)

- 0, a 0,
Al 7075-T651 C (GPa) oerror C dP, (KN/m) . dP, W,/ W, Yoerror W,/ W,
dh dh
hm h,
Test Al 40.7 =71 3636 14 0.839 18
Test A2 426 -2.8 3637 14 0.831 0.9
Test A3 415 -55 3498 —-25 0.829 0.6
Test A4 40.7 -7.2 3636 14 0.835 13
Test A5 40.8 -7.0 3566 -0.5 0.834 12
Test A6 41.2 -6.0 3600 04 0.831 0.8
Average 41.2 3595 0.833
Forward prediction 439 3585 0.824
(assume v = 0.33 and
Berkovich cx)
STDEVP 16 51.7 0.00956
STDEV/Xprediction 3.7% 1.4% 1.2%

@ All errors were computed as Xieq — Xprediciion! Xpredicions Where X represents a variable.

1
b STDEV = \/ NZ”: 1(Xtess— Xprediciion)?s Where X represents a variable.

Table 5

Forward analysis on Al 7075-T651 for 60° cone equivalent 3-
sided pyramid indentation experiments (max. load = 3 N)

Al 7075-T651 Cy, (GPa) %error C,2
Test Blp 17.41 —-79
Test B2p 17.52 74
Test B3p 16.95 -104
Test B4p 17.75 —-6.2
Test B5p 18.08 —4.4
Test B6p 17.90 —-54
Average 17.60

Forward prediction (60° cone equi-

valent 3-sided pyramid) 18.92

STDEV® 1.37
STDEV/Xpyegiction 7.2%

aAll errors were COranﬂaj as Xta_xpredictionlxpredictiom Where

X represents a variable.

N

1
b STDEV = \/ 2N 1 (Kiest— Xoredicion) > Where X represents

avariable.

4. Uniqueness of the dual indentation forward

and reverse analysis

4.1. Uniqueness of the forward analysis

In order to verify the proposed forward algor-
ithms, computational results from the 76 sets of

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

elasto-plastic parameters were taken as input to

predict the entire P—h responses of 6 = 70.3° and

the loading curvature for 6 = 60°. Each of the for-

ward analyses resulted in a single set of output
h, dP

<Ca,h',0(|jh“ and Cb), which agrees well with the
m hm

FEM-predicted P-h response.

4.2. Uniqueness of the reverse analysis

In order to verify the proposed reverse analysis
algorithms, the 76 cases of the forward analysis
(output) results were used as input to verify the
uniqueness of the reverse analysis algorithms. All
76 cases resulted in a single, accurate re-construc-
tion of the initial elasto-plastic parameters. For the
single indentation reverse algorithm in [1], two
cases out of the same group of 76 cases resulted in
no solution. The improvement over our previously
proposed reverse agorithm [1] came from the fact
that the dimensionless function I1,, or Il,, which
is not monotonic in n when E*/0qq3 < 50 for
I, or 0o/ E* < 0.005 for Ilg,, is no longer
used in the present reverse algorithm. Within the
range of our current study, the dual indentation
algorithm resolves the uniqueness problem.

Cheng and Cheng [20] discussed the non-
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W
, Cy, 6, h (or =2), }
a b |(Or PVI) 'im

[Reverse Problem: C

(or ),

dpP, ‘
m d/? hm

n
:> E & Am’ pavc’00.033’ O-y’ n J

set v

("_Z] H——————— Solve for T
h

h

J—HM{ELJ — Solve for 4, E”

Obtain p,

W, _
A
L B ol | e LTE
E*A, dh|, e 4
| | |
v ¥
E' E
R £“0 033 ] = [ ]m["a

#
—_ | —_— » y
] Solve for o; ;& o

v

Assume n=0

n
E
%033 =%y [I+J—y0.033} &

— Solve for o, & n

Fig. 7. Dual indentation reverse analysis agorithms.

uniqueness issues by showing that multiple stress—
strain curves could result in avisually similar load-
ing and unloading curve. However, such cases
were based on the FEM results of 68° apex angle.
Following an approach similar to that in Cheng and
Cheng [20] for our FEM results of 70.3° apex
angle, Fig. 8 shows a set of three visualy similar
FEM indentation responses of steel with different
yield strength and strain hardening exponent. It is
worth noting two points here. First, when these
three visually similar FEM indentation responses
(small but with finite differences in the P-h
characteristics) were input into the single indenter
reverse algorithm [1], three unique sets of mechan-
ical properties can still be obtained, athough the
accuracy is sensitive to small experimental scatters.

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

Second, using the second indenter for analysis
helps in reducing the non-uniqueness problem and
improving the accuracy, as clearly shown by the
different loading curvatures of the second inden-
tation response from 60° cone tip. The dual inden-
tation reverse algorithm is thus capable of accu-
rately performing the reverse analysis on these
three curves.

5. Sensitivity of the dual indentation analysis
5.1. Sensitivity of the forward analysis

Similar to the sensitivity analysis performed in
our previous work [1], a 5% change in any one
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Table 6

Dual Indentation Reverse Analysis on Al 6061-T6511 (assume v = 0.3)

Al 6061-T6511  Single [1] Dua (+B..0)
o, (MPa) %err o, E* (GPa) %err E* (53] Y%ErT Opo3s Oo.0s7 %err oo0s7 0y (MPa) %err o,
(MPa) (MPa)
Test Al 333.1 17.3 67.6 —-3.7 3345 -10? 353.9 0.7 261.7 =79
Test A2 349.4 23.0 66.1 —5.8 349.4 34 355.3 11 322.7 13.6
Test A3 332.8 17.2 66.5 —5.3 332.8 -15 355.0 1.0 246.5 —-13.2
Test A4 171.0 —39.8 75.0 6.8 3229 —45 348.0 -10 225.2 —20.7
Test A5 128.0 —549 778 10.8 315.9 —6.5 346.0 -16 204.4 —28.0
Test A6 2785 -19 679 —-34 337.4 -0.2 353.7 0.6 272.9 -39
Average 265.5 70.1 332.1 352.0 255.6
Uniaxia Exp 284 70.2 338 351.6 284
STDEV® 87.7 45 12.2 3.6 47.1
STDEV /Xexp 30.9% 6.5% 3.6% 1.0% 16.6%
a All errors were computed as X, ana,ys,-s—)_(exp/)_(exp, where X represents a variable.
1 _
b STDEV = \/ NZ”: 1(Xrev. analysis— Xexp)?, Where X represents a variable.
Table 7
Dual indentation reverse analysis on Al 7075-T651 (assume v = 0.3)
Al 7075-T651 Single Dual (+B..e)
o, (MPa) %err o, E* (GPa) %err E* Oo.033 %IT Oposzs  Ooosy BT Opos; Oy (MPa) %err o,
(MPa) (MPa)
Test Al 320.2 —36.0 795 0.5 537.6 —-12.92 5852 —105 380.4 —-12.3
Test A2 314.6 —-37.1 815 —2.6 566.9 —-8.2 5819 -110 511.1 —26.7
Test A3 332.1 —33.6 772 0.8 557.6 —-97 589.4 —-98 447.8 -9.1
Test A4 289.7 —421 797 2.8 536.8 -13.1 5849 —105 376.7 24
Test A5 316.0 —36.8 78.0 4.4 542.5 =121 5878 —101 390.1 8.0
Test A6 279.7 —44.1 80.0 4.2 5454 —-11.7 5845 —10.6 410.3 23.8
Average 308.7 79.3 547.8 585.6 419.4
Uniaxia exp 500 734 617.5 653.6 500
STDEV® 192.14 6.1 70.6 68.0 935
STDEV /Xey 38.4% 8.3% 11.4% 10.4% 18.7%

2 All errors were computed as Xye,. amayss— Xep/ Xexp Where X represents a variable.

1 = .
b STDEV = \/ 2N 1 (Xrev. analyss— Xexp)?, Where X represents a variable.

N

input parameter (i.e., E*, o, or n) would lead to
variations of less than +7.6% in the predicted
h, dP,
,h*m,mh

variability confirms the robustness of the forward
algorithm.

results (Ca and Cb). The rather small

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

5.2. Sensitivity of the reverse analysis

The sensitivity of the estimated mechanical
properties to variations in the input parameters
obtained from dual P—h curves was investigated for
the 76 cases examined in this study. For each of
these cases, the sensitivity of the estimated elasto-
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Fig. 8. Dua indentation forward analysis algorithms.

plastic properties to variations in the four P-h

u Wp
dh h W, and C,—about
their respective reference values (as estimated from

the forward analysis) was analyzed. The variations

curve parameters—C,,

. dP,| W
of +1%, +2%, +3% and +4% in C,——| . and
dh A W,

C, about their forward prediction values were fed
into the reverse agorithm. The outputs from
reverse algorithm were statistically compared with
the original values of elasto-plastic properties. The
standard deviations (STDEV) were calculated for
each +x% variation, thus sampled over 2 x 76 =
152 data points, and compared with that of single
indentation. Table 8 lists the specific values of
STDEV of the dua indentation normalized with
that of the single indentation at +2% C, 2%
dr,

dh
hm

mental scattering. Other variationsin the P-h curve
parameters follow the similar trend shown in Table
8. Significant improvement of yield strength (for a
two-parameter power law plastic constitutive law)
was achieved due to the second plasticity para-
meter, 0,057, Which can be predicted as robustly
as Opozs. FOr instance, within +1% experimental
error in W,/ W, the average error in the estimated
yield strength was reduced by 80% using the dual
indentation algorithm.

W,
and +1% Wp typically found in the experi-
t
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Table 8
Normalized standard deviations in properties estimation using
dua indentation reverse algorithm

(Input) 2% 2% +1% W,/
change in C. dp, Wi
(Output)
: dh
change in oy
Normalized STDEV ~ E* 1 1 1
in estimated ool 1 1 1
properties® o, (h=1 0.45 0.20
0.1)
o,(n 083 034 0.18
> 0.1)
Pave 1 1 0.53

2 The normalized STDEV is caculated from STDEV g4/

1
STDEV gnge, Where STDEV = \/NziN: 1(Xvaried ™ Xreterence)” @Nd

X,aied FEPresents a percentage deviation from X gerence-
6. Extension to multiple-indentation analysis

To further improve the accuracy and reduce the
sensitivity of the reverse agorithm, multiple
indenter geometries may be used. This multiple
indentation analysis requires a complete inden-
tation curve of VickersBerkovich indenter and a
loading indentation curve of other tip geometries,
0e[50°,80°]. A set of the multiple indentation
reverse algorithms is shown in Fig. 9. It is similar
to that of dual indentation except at the last step
where yield strength and strain hardening exponent
are to be determined. For each indenter geometry
(), a pair of representative strain and stress can
be determined using generalized dimensionless
function I1,, and €, in Egs. (A.10) and (10ab),
respectively. By statistically fitting (least square
error) these stress/strain values with the power
hardening equation (Eq. (4)), oy, and n can be
determined.

On the other hand, the dua indentation algor-
ithms shown in Fig. 6 can be easily extended to
different tip geometries 6 [50°,80°]. Given a set
of elasto-plastic properties, one can predict a com-
plete indentation response for Vickers/Berkovich
indenter and a loading indentation response for
arbitrary indenter tip geometries.
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R T W, dP, .
everse Problem: C,, Cy, 6, h (or=2 ), h, (or P, ), =~ By DeoiOh sy Gl
W, dhlp, setv ?
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¥ R h,
1 dh| P 1 (P (/’1 ]
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I |
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_ E E . E n
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& °y oy r > Statistically solve for o, & n
Fig. 9. Multiple indentation reverse analysis algorithms.
7. Conclusions given set of properties, and also for extraction

In this study, dimensional analyses and large

deformation finite element studies were performed
to address the uniqueness problem in the extraction

of

material properties from instrumented sharp

indentation and to improve the accuracy and sensi-
tivity of the algorithms used to extract such proper-
ties. The key results of this investigation can be
summarized as follows:

1

Using dimensional analysis, additional univer-
sal, dimensionless functions were constructed to
correlate elasto-plastic properties of materials
with indentation response for 50°, 60° and 80°
cone (or their equivaent 3-sided pyramids).
Choosing a pair of Berkovich (or Vickers) and
60° cone (or its equivalent 3-sided pyramid),
forward and reverse analysis algorithms were
established based on the identified dimen-
sionless functions. These algorithms alow for
the calculation of indentation response for a

AM: ACTA MATERIALIA - ELseviER - MODEL 3 - ELSEVIER

. The accuracy of

of some plastic properties from a dual set of
indentation data, thus obviating the need for
large-scale finite element computations after
each indentation test.

. Assuming large deformation FEM simulations

and an isotropic power law elasto-plastic consti-
tutive description within the specified range of
material parameters, the present reverse agor-
ithms using dua indenters (Berkovich/Vickers
and cone of 60° apex angle) were able to predict
asingle set of values for E*, o, and n. Further-
more, the full stress—strain response can be esti-
mated from the power law assumption.

the dua indentation
forward/reverse algorithms were verified in two
aluminum alloys (6061-T6511 and 7075-T651)
with an improvement over the single indentation
forward/forward algorithms.

. The proposed dual indentation forward algor-

ithms work well and robustly with similar sensi-
tivity to the single indentation forward algor-
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ithms; a +5% error in any input parameter
resultsin lessthan £7.6% in the predicted values
fo hdhy e
0 “h dh or C,.

5. The proposed dual indentation reverse agor-
ithms were found to predict E*, 04055 and
00057 quite well, and o, reasonably well for the
cases studied. Comprehensive sensitivity analy-
ses show that o, displayed much reduced sensi-
tivity to al P-h parameters due to the second
plasticity parameter that can be robustly esti-
mated; whereas, E*, 04033 00057 and Pae dis
played similar sensitivity to the single inden-
tation algorithms.

6. The extension of forward/reverse agorithms to
using multiple indenter geometries, 50°=0=
80°, was proposed with generalized functions of
representative strain and indentation loading
curvature.
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Appendix A

In this appendix, eight dimensionless functions
used in the current study are listed.
11, 10, 105,11, 115,116, were constructed in our
earlier work [1], and II,,II,. and II,, are con-
structed in the current study. These functions can
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be used to formulate dual indentation forward and
reverse algorithms in addition to single inden-

E )
00_033

L — Ca _ —1.131[In<
+13.635[ (00033)] (A.1)
—30.594[ (

00.033
E*
H2a< I n
00.033

—1.40557n° + 0.77526n* + 0.15830n

)] + 29.267

O0.033

1 dP|
" E'h, dh| =~

*

—0.06831)[|n< E

00.033

S
)] + (17.93006n°

—9.22091n?—2.37733n (A.2)

+ 0.86295) [In( E )]2 + (
00.033

—79.99715n° + 40.55620n% + 9.00157n

*

E
—2.54543) [ln(

00.033

)] + (122.650691°

—63.88418n2—9.58936n + 6.20045)

h
H3a<6cé233,n> = - = (0.010100r

+0.0017639n

Oooa3) |°
—0.0040837) | In| —=— =

+(0.14386n7 + 0.018153n (A.3)

2
-0. 088198)[In< ‘é‘m)] + (0.59505n

E*
+ (0.58180n>—0.088460n—0.67290)

+0.034074n—0. 65417)[In<60 033)}

Pave

H =
4a E*

=0. 268536(0. 9952495 (A4
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* 3
h \ 11142735 My = Ep_ 0.0394[In< E )]
_Eq O0.082 Oo.082
W, —1.008| In[-£- 2+9862| E ) a9
Mo = F = 1.61217{1.13111 il L P, 862 In| || (A-9)
t
h 2535334 —11.837
—1.74756[*1-49291(#) (A.5)
" For any 6 in [50°,80°], the general fit function for
hr 1.135826 H iS
—0.075187( . 9
Pm
Co
1 dp, O, = 2= (—2.3985 X 10 563
Mo = gn| =€ (A.6) v =g,
E*\A, dh]

where values of c¢* are tabulated in Table A.1.
For 6 = 60°,

E* 3
I, = - - —0154|In
O

il )| = 7ol
+0.932(In + 7.657|In (A.7)
O00.057 O0.057

—11.773
For 6 = 80°,

* 3
I, = Ce = —2.913["1( E )]
00.017 00.017

E* ) :|2
O00.017

*

+ 44.023[In< (A.8)

E
—122.771[|n<

Oo.017

)] + 119.991

For 6 = 50°,

Table A.1
The values of cx used in the study [1]

cx Small deformation Large deformation
linear elastic solution® elasto-plastic solution®

Conical 1.128 1.1957

Berkovich  1.167 1.2370

Vickers 1.142 1.2105
aKing [29].

b Proposed in the current study.
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+6.0446 X 10~ “9? + 0.132436

*

E 3
—5.0950)[In<6)] + (0.001474163

—0.215026% + 10.44156

*

—169.8767)[|n<5>]2 +(—39124  (A.10)

X 107363 + 0.5333262—23.28340

*

+ 329.7724)[In<5)] + (2.6981

Er

X 10-393—0.291976% + 7.57616
+ 2.0165)

Appendix B

In this study, large deformation finite element com-
putational simulations of depth-sensing indentation
were carried out for 76 different combinations of
elasto-plastic properties that encompass the wide
range of parameters commonly found in pure and
alloyed engineering metals; Young's modulus, E,
was varied from 10 to 210 GPa, yield strength, oy,
from 30 to 3000 MPa, and strain hardening
exponent, n, from 0 to 0.5, and the Poisson’s ratio,
v, was fixed at 0.3. Table B.1 tabulates the elasto-
plastic parameters used in these 76 cases.
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Table B.1
Elasto-plastic parameters used in the present study

E(GP) o, (MPa) o,E

19 combinations 10 30 0.003

of E and oy? 10 100 0.01
10 300 0.03
50 200 0.004
50 600 0.012
50 1000 0.02
50 2000 0.04
90 500 0.005556
90 1500 0.016667
90 3000 0.033333
130 1000 0.007692
130 2000 0.015385
130 3000 0.023077
170 300 0.001765
170 1500 0.008824
170 3000 0.017647
210 300 0.001429
210 1800 0.008571
210 3000 0.014286

a For each one of the 19 cases listed above, strain hardening
exponent n is varied from 0, 0.1, 0.3 to 0.5, resulting in a total
of 76 different cases.
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