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Abstract
Using nanoindentation, we examine the fundamental nature of plasticity in a

bulk amorphous metal. We find that the mechanics of plasticity depend strongly
on the indentation loading rate, with low rates promoting discretization of
plasticity into rapid bursts. For sufficiently slow indentations, we find that
plastic deformation becomes completely discretized in a series of isolated
yielding events. As the loading rate is increased, a transition from discrete to
continuous yielding is observed. These results are fundamentally different from
the classical expectations for metallic glasses, in which the transition from discrete
to continuous yielding occurs upon a decrease in deformation rate. The present
experimental results are analysed with reference to the theoretical ideal-plastic
strain field beneath an indenter and rationalized on the basis of mechanistic
models of glass plasticity.

} 1. Introduction
The plastic deformation of bulk amorphous metals is fundamentally different

from that in crystalline solids, because of the lack of long-range order in the atomic
structure. Whereas dislocations and defects carry plastic strain in crystals, amor-
phous alloys yield through intense shearing in narrow bands (Argon et al. 1985,
Donovan 1988, Hays et al. 2000, Wright et al. 2001a, b, Kim et al. 2002).
Mechanistically, these shear bands are self-organized assemblies of smaller units of
plasticity, that is, volume elements of material containing about 30–50 atoms that
individually undergo local shear transformation. Topologically, such shear motions
require a local increase in free volume (a dilatation) and produce an elastic strain
field that autocatalytically initiates similar shear transformations in neighbouring
volume elements. Argon and co-workers have successfully modelled this phenom-
enon analytically (Argon 1979, Argon and Shi 1983), using two-dimensional (2D)
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analogues (Argon and Kuo 1979, Argon and Shi 1982), as well as computer simula-
tion techniques (Deng et al. 1989, Bulatov and Argon 1994).

The operation of shear bands on the atomic level gives rise to several unique
mechanical properties at the macroscopic level. For example, in amorphous metals:

(i) macroscopic yield apparently cannot be described by the classic von Mises
yield criterion (Davis and Kavesh 1975, Donovan 1989, Lowhaphandu et al.
1999, Flores and Dauskardt 2001, Vaidyanathan et al. 2001), which is
broadly valid for most crystalline metals,

(ii) in tension, little or no macroscopic ductility is observed, because of separa-
tion along a single plane of shear (Megusar et al. 1979, Mukai et al. 2002a)
and

(iii) in compression, plastic yielding is observed, but it does not occur smoothly,
instead exhibiting ‘load serrations’ during brief intervals when the strain is
carried by a single shear band (Kimura and Masumoto 1983, Wright et al.
2001a).

These novel properties have been investigated in a variety of amorphous metals
with very different compositions, and appear to be general to this class of materials,
which collectively are candidates for many structural and functional applications.

Instrumented nanoindentation is increasingly being used to probe the mechanical
properties of a highly localized region in materials (Bhushan 1999). During indenta-
tion, the depth of a rigid indenter tip is monitored as it is pressed into a substrate;
the resulting load–displacement response reflects deformation by plasticity and/or
elasticity. In preliminary indentation studies on amorphous alloys, shear bands have
been observed on the specimen surface and beneath the indenter (Golovin et al. 2001,
Vaidyanathan et al. 2001, Kim et al. 2002). Additionally, the activation of shear
bands under the indenter (as observed by atomic force microscopy) has been
correlated with discrete displacement bursts that appear as discontinuities in the
load–displacement curve (Golovin et al. 2001, Wright et al. 2001a, Greer and
Walker 2002, Schuh et al. 2002, Schuh and Nieh 2003). When such bursts are
observed in crystalline materials, they are ascribed to non-continuum events
such as defect nucleation (Corcoran et al. 1997, Suresh et al. 1999, Gouldstone
et al. 2001); as the depth of the indent increases, these discrete events give way to
continuum plasticity in crystals, reflected in a smooth, parabolic load–displacement
curve.

In the present work, nanoindentation is used to explore the nature of plasticity
in a Pd-based bulk metallic glass. We identify an apparent incongruity with respect
to the established mechanistic understanding of plastic flow in these alloys, where
more rapid indentation leads to homogenization of flow. Combining existing
models of glass plasticity and the flow field under an indenter, we offer a mechanistic
explanation for the unique experimental observations.

} 2. Experimental procedures and results

The bulk metallic glass used in this work was an alloy of composition Pd–10 at.%
Ni–30 at.%Cu–20 at.%P prepared by a casting technique (Kato et al. 2001). The
specimen was mechanically polished to a mirror finish and tested in a TriboIndenter
instrumented nanoindenter (from Hysitron, Minneapolis, Minnesota), using
constant loading rates from 8� 10�5 to 2� 10�2 N s�1, with peak applied loads of
10mN. The constant-loading-rate experiment tends to exhibit a roughly constant
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indenter velocity, which ranged from 10�9 to 10�5m s�1 in these tests. In all the
experiments, a conical diamond indenter with a blunt spherical tip radius of 450 nm
was used, and care was taken to ensure that the thermal drift of the instrument
was maintained below 0.5 nm s�1. Displacement bursts occur quite rapidly;
so data were acquired at sampling rates near 6000Hz for most of the experiments
reported here, and at somewhat lower rates (near 1000Hz) for some of the longer
experiments.

Several typical load P–displacement h curves are shown in figure 1 for the load-
ing portion of the experiment; the origin of each curve has been displaced for clearer
observation. For the indentations performed at lower loading rates, these curves are
punctuated by many displacement bursts, where the indentation depth increases
abruptly at an approximately constant load. The depth of individual discontinuities
increases with increasing load or depth, as a consequence of the increasing length
scale of the indentation geometry. As figure 1 illustrates, the character of the dis-
placement bursts depends on the rate of loading; slow loading conditions produce
sharper, more horizontal discontinuities. At higher loading rates, the discontinuities
appear less as horizontal bursts than as gentle ripples in the load–displacement
curve, each one extended over a range of loads. At the highest rate investigated
(0.33N s�1), the load–displacement curve is smooth and does not exhibit any notable
discontinuities.

Owing to the very rapid data acquisition used in some of the present experiments,
it was possible to measure the duration of individual shear localization events
with reasonable accuracy. Figure 2 shows a histogram derived from analysis of
48 individual rapid displacement bursts, indicating the number of bursts with a
given duration ��. The modal burst duration was 6ms, with a spread of about
� 4ms. These values are in general agreement with the result of Neuhauser (1978),
who identified for �� �2–6m s in cinematographic studies of shear band motion.
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Figure 1. Applied load P plotted against the nanoindentation depth h for amorphous
Pd–10 at.%Ni–30 at.%Cu–20 at.%P, at four different loading rates.



} 3. Transition from discrete to homogeneous plasticity

In figure 3, one example of a load–displacement curve at a slow loading rate
(8� 10�5N s�1) is shown; the depth recovered upon elastic unloading is denoted as
he. The contribution of discrete shear bands to the total elastic–plastic curve can be
assessed by removing all the discontinuities from the curve, forming a ‘consolidated
elastic’ load–displacement curve (Gouldstone et al. 2000). The arrows in figure 3
illustrate this procedure, and the resulting consolidated curve is a smooth bold curve.
The maximum depth of the consolidated curve is he

0
� 223 nm, which is close to the

true elastic depth of the indentation, he� 208 nm. This result indicates that essen-
tially all the plastic strain experienced by the amorphous alloy occurs in discretized
displacement bursts, by the operation of individual shear bands.

The above result can be further validated by considering the expected theoretical
consolidated elastic curve, for which the load–displacement relation is given by
Oliver and Pharr (1992):

dP

dhe
¼

2

p1=2
ERA

1=2, ð1Þ

with ER the reduced biaxial modulusy and A the projected contact area between
indenter and substrate. When small strains and a spherical indenter are assumed,
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yE�1
R ¼ ð1� viÞE�1

i þ ð1� vsÞE�1
s , where E is the elastic modulus, v is Poisson’s ratio, and

the subscripts i and s denote the indenter and substrate respectively. In the present case we use
ER¼ 104GPa, based on constants from the work of Wang et al. (2000) and Golovin et al.
(2001); the same value was obtained by analysis of elastic unloading curves in this work, based
on the method given by Oliver and Pharr (1992).
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Figure 2. Histogram illustrating the distribution of rapid displacement burst durations ��
during experiments such as shown in figure 1.



equation (1) reduces to the classic Hertz contact theory (Johnson 1985). For the
present geometry, the indenter tip is approximately spherical for shallow indents,
and equation (1) reduces to

dP

dhe
¼ 2ER½2RhpDp � ðhpDpÞ

2
�
1=2; ð2Þ

where R is the radius of the indenter and the parameter Dp is introduced as a
correction factor that accounts for the elastic deflection of the surface around the
indenty. In figure 3, the elastic prediction found by integrating equation (2) is shown
for Pd–10 at.%Ni–30 at.%Cu–20 at.%P as a broken curve, which is in close agree-
ment with the consolidated elastic curve derived experimentally. This conformity
between theory and experiment further confirms that the plastic deformation
sustained during nanoindentation can be wholly attributed to displacement burst
events. Although prior research has shown that shear band propagation produces
plastic strain in amorphous alloys, the results in figure 3 indicate that, at sufficiently
slow deformation rates, discretized shear band activity is the only source of plastic
strain in this alloy.
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yDuring nanoindentation, the projected contact area is a function of the depth of the
indent. Because the surface of the specimen deflects elastically around the indent, the measured
depth h is somewhat larger than the true depth of the indent. Equation (2) for the consolidated
elastic P–h curve thus requires a correction, as discussed in detail by Oliver and Pharr (1992).
The correction factor is taken as Dp¼ 1�"/2, where " � 0:75 as given by Oliver and Pharr
(1992).
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Figure 3. The serrated black curve illustrates the load P–displacement h curve upon loading
at a rate of 8� 10�5 s�1, followed by the elastic recovery to a depth he upon unloading.
After removal of the plastic discontinuities, the corrected loading curve (smooth black
curve denoted by the arrows) matches the contact mechanics prediction for pure
elasticity (the broken curve predicted by equation (2)).



Just as the result of figure 3 suggests complete localization of plasticity at a low
loading rate, the curves in figure 1 illustrate homogeneous plastic yielding at high
loading rates, with no evidence of any discrete plasticity events. The transition from
discretized- to continuum-yielding behaviour is summarized in figure 4, in which the
fraction of the total plastic depth attributable to discrete displacement bursts is
plotted as a function of the applied indentation velocity. The end points on this
figure illustrate the two extremes described above, where all or none of the plastic
deformation can be attributed to discrete yielding bursts. Over the four-decade range
of indenter velocities between these endpoints, the data present a smooth transition
from continuum to discrete plasticity.

} 4. Mechanistic interpretation

The interesting aspect of the above experimental observations is their fundamen-
tal difference from the usual plastic response of metallic glasses. Whereas we report a
transition from localized to homogeneous plasticity as the strain rate is increased,
many prior studies have demonstrated that metallic glasses undergo shear localiza-
tion at high strain rates but deform quite homogeneously at low strain rates or high
temperatures above a characteristic temperature (Spaepen 1977, Argon 1979,
Megusar et al. 1979). This classical behaviour is explained mechanistically by a
flow-induced dilatation effect, where ‘unit’ plastic processes (local shear transforma-
tions in clusters of atoms incorporating some excess free volume) are accompanied
by a topologically required activation dilatation (Spaepen 1977, Argon 1979).
At elevated temperatures and/or low strain rates, diffusive rearrangements among
atoms are rapid; so flow-induced dilatations collapse as rapidly as they form and
deformation is homogeneous. At lower temperatures and/or high strain rates the
local flow-induced dilatations (free volume) are not dispersed by local diffusive
rearrangements, producing a drop of plastic shear resistance that autocatalytically
results in intense shear localization (Argon 1979, Bulatov and Argon 1994).
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Figure 4. The ratio of discrete plastic depth hd to plastic depth hp as a function of nano-
indentation velocity. This ratio approaches unity at low rates (corresponding to fully
discretized plasticity), and zero at high rates (corresponding to smooth continuous
yielding).



In tension experiments this produces runaway shearing off and separation by a
characteristic Taylor meniscus instability fracture, which has been modelled as a
ductile crack extension process (Argon and Salama 1976). In support of these
models, flow dilatations inside intense shear bands of glassy metals have been
measured ex post facto (Megusar et al. 1982, Argon et al. 1985), and recent experi-
ments have shown that shear bands contain vacancy clusters (Li et al. 2002) or
nanocrystals (Kim et al. 2002), both of which are consistent with an increase in
free volume within shear bands.

At first glance, the experimental results described previously are at variance
with the above mechanistic description of plasticity in metallic glasses. In what
follows we consider the details of deformation beneath an indenter and show that
the present results can, in fact, be interpreted on the same mechanistic basis.

4.1. The plastic flow field under an indenter
To analyse the reported behaviour at low indentation rates where intense shear

localization occurs, some understanding of the plastic flow field is essential. We
idealize the material response to be of two parts: a purely elastic Hertzian response
and a plastic rigid non-hardening response as figure 3 suggests. An accurate flow
field solution for such combined material behaviour is not available. A rigid–plastic
slip line solution under a spherical indenter is available but is too complex to be of
use in the present context (Ishlinsky 1944). To provide an approximate but still
insightful analysis we treat the rigid–plastic response component by means of an
axisymmetric slip-line field solution of a rigid frictionless cone impressed into a
rigid–plastic non-hardening material half space (Lockett 1963). It is important to
note that the slip-line field solution used below assumes that yield occurs on the
surfaces of maximum shear although, for metallic glasses, yield apparently also
involves a small pressure dependence (Lowhaphandu et al. 1999, Flores and
Dauskardt 2001, Vaidyanathan et al. 2001). Given the assumed indenter shape
and pressure-independent yield criterion, the developments to follow are intended
only to be approximate and illustrative, and not a rigorous theory.

Figure 5 shows the classical flow field of Hill (1950) for a 2D plane-strain wedge
indentation, made up of four right triangles and two focused shear fans connecting
the triangles. For an axisymmetric cone indentation the field is qualitatively similar,
although the slip lines and the pile-up surface are curved (Lockett 1963, Johnson
1985). We take this to be a reasonable representation of the plastic indentation field
in its final stages. To create a semblance of similarity between the actual problem and
the slip-line field solution, we assume that at any point during the indentation the
true indenter can be approximated by an ideal cone of the same volume, for which
the half-angle � is given as

tan � ¼
3

ph3t

ðht
0

AðhÞ dh

� �1=2
, ð3Þ

where A(h) is the empirical area function of the indenter tip (for example, Oliver and
Pharr (1992)), and ht is the total plastic depth of the indenter below its contact point
with the surface, including the plastic depth hp relative to the original undisturbed
surface and the height hpile-up, of the piled-up material above the original surface
(see figure 5):

ht ¼ hp þ hpile-up: ð4Þ
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In figure 5, the triangle KAC represents the piled-up material conserving that
from the indented region BOK. At a given plastic depth hp, the current slip activity
is concentrated entirely in the outer paths BDEC towards both sides, connecting
the indenter tip to the free surface. The triangular zones and the focused shear fan
have been sheared previously, and slip activity is dormant there. All parts of the
half-space below the slip-line field in the amorphous metal are considered rigid,
where the state of stress does not exceed yield. Additional geometric parameters,
including the shear fan angle  and the shape of the piled-up surface are derived as
part of the full slip-line field solution.

Lockett (1963) has solved the cone indentation problem using a finite-difference
slip-line field analysis, assuming that the indented material has a plastic shear
resistance k. His results are summarized in figure 6, which plots the mean pressure
applied to the indenter (i.e. the hardness) as a function of the cone half-angle �.
These results are conveniently summarized by a linear least-squares fitted relation-
ship:

H ¼ k 1:41þ 2:72�ð Þ: ð5Þ

The total plastic indentation load P then becomes

P ¼ ph2t tan
2 � k 1:41þ 2:72�ð Þ: ð6Þ

As part of his numerical solution, Lockett (1963) also determined the height of the
piled-up material around the indentation, as shown in figure 6. Again, his numerical
results are reasonably expressed by a least-squares linear fit as

hpile-up

ht tan �
¼ 0:454� 0:298�ð Þ: ð7Þ

All that is required to evaluate the above flow-field model is an estimate of the
shear resistance k of the Pd–30 at.%Cu–10 at.%Ni–20 at.%P metallic glass.
Although we know of no direct measurement of this parameter for this alloy,
there are some data that suggest a value of k � 1GPa. Firstly, uniaxial deformation
experiments on similar glasses, including Pd–20 at.%Ni, Pd–17 at.%Si–6 at.%Cu
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Figure 5. Idealized slip-line plastic field beneath a wedge-shaped indenter. Under axisym-
metric flow the field is similar, but the material surfaces AC and slip lines exhibit some
curvature.



and Pd–40 at.%Ni–20 at.%P, give the yield stress �y � 1:7GPa at nearly all loading
rates (Chen 1973, Pampillo and Chen 1974, Donovan 1988, Mukai et al. 2002a, b).
Using the von Mises relation between tensile and shear strength then gives
k � 0:98GPa. Secondly, Golovin et al. (2001) have indented a glass with nominally
the same composition as the present alloy, Pd–30 at.%Cu–10 at.%Ni–20 at.%P,
giving average hardness values of about 5GPa. Using an approximate connection
between hardness and tensile flow stress (H � 3�y) again gives �y � 1.7GPa and k �
0.98GPa. Based on the reported Young’s modulus of 105GPa (Golovin et al. 2001)
and an assumed Poisson’s ratio of 0.3 for this alloy, we find that the ratio of shear
resistance to shear modulus is k/�¼ 0.025, which is quite in keeping with the
expected ratio at room temperature of a typical amorphous metal alloy based on
fundamental mechanistic models (Argon 1979).

In figure 7, the plastic indentation depth is plotted for the data set from figure 3,
as are the predictions of the slip-line field model. The experimental data exhibit a
staircase shape due to the perfectly discrete nature of plasticity in Pd–30 at.%Cu–
10 at.%Ni–20 at.%P at this loading rate. Using as input k¼ 1GPa, the model
over-predicts the amount of plastic deformation in the glass, but the agreement
with experiment is quite reasonable considering the many approximations made.
It is particularly noteworthy that the model captures the linearity of the trend in
figure 7, which results from the change in indenter geometry with depth. With a
somewhat larger input of k¼ 1.5GPa, a good quantitative agreement with experi-
ment is obtained (figure 7). The larger value of k required to fit the experimental data
is probably associated with the various assumptions of the slip-line field solution that
we have used; for example, a pressure-dependent shear resistance may account for
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this discrepancy. In any case, we believe that at any given plastic depth the slip-line
field model can be used as a reasonable illustration of the plastic flow field under the
indenter.

With a description of the flow field in hand, the average slip velocity at the plastic

zone border of BDEC, can be calculated as VB � Vi2
1=2 sin �, with Vi the velocity of

the indenter. For the applied indentation velocities Vi¼ 10
�9–10�5m s�1, average

slip velocities in the range from 1.1� 10�9 to 1.4� 10�5m s�1 are suggested.
However, during individual displacement bursts, the instantaneous indenter velocity
is measured to be as high as 2� 10�5m s�1. This value is also reflected by the data in
figure 4, which show that displacement bursts can no longer be observed above Vi �
10�5m s�1. The local velocity of these discrete slip events (nominally the velocity of
shear banding) is thus estimated as VB � 1.1� 10�5–2.8� 10�5m s�1 (11–28 mms�1).
These values of VB are much too low to account for the fact that shear bands can
propagate across macroscopic specimens on millisecond time scales (Wright et al.
2001b). This result implies that the autocatalytic nucleation of an embryonic shear
band is slow compared with the subsequent propagation of the shear band, as
expected on the basis of mechanistic models (Argon 1979). This viewpoint will be
used in the following section to explain the observed transition from discrete to
continuous yielding in the indentation experiments.

4.2. Mechanism of the transition from localized to homogeneous flow
For the Hertzian spherical contact problem it is known that plastic deformation

is initiated at a distance of about half the contact radius beneath the indenter, when
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the deviatoric stress there reaches the tensile plastic resistance and the indentation
load P reaches a value

Pcrit ¼ 372Ea
k3

E3
, ð8Þ

where a is the radius of the contact. On a more mechanistic basis, this initiation of
plasticity occurs in a representative volume element (RVE) incorporating a small
number of atomic clusters; the volume of the RVE we estimate from earlier studies to
be about 7.7� 10�28m3, that is roughly a diameter of 3–5 nm (Argon and Shi 1983,
Pekarskaya et al. 2001).

As discussed in considerable detail elsewhere (Argon 1979), all plastic flow in a
glassy metal starts out at the length scale of the RVE and broadens homogeneously.
At low temperatures where diffusive atomic rearrangements are too slow and flow-
induced dilatations are sufficiently long lived to localize plastic flow autocatalyti-
cally, shear flow rapidly narrows into intense bands roughly of the thickness of the
RVE (i.e. 3–5 nm) at the expense of shear flow in the surroundings, which rapidly
ceases. During this period, the specimen undergoes a macroscopic shear strain incre-
ment�	 � 0.01 over a duration of the order of 4–10m s, as suggested by figure 2 and
the cinematographic studies of Neuhauser (1978). Within the forming shear band
there is a sharp dilatation-induced drop in plastic resistance by several per cent, while
the surrounding material remains unsheared and stiff. Accordingly, the shear band
soon acquires the character of a mode II crack with a nearly rate-independent shear
resistance in its flanks (Argon and Salama 1976). It propagates very quickly, with a
velocity approaching small fractions of the Rayleigh velocity.

Following the above discussion, we envisage the plastic response mode under the
indenter as a time series of repeated plastic shear bursts, sweeping out along the
borders BDEC (figure 5) toward the surface. For this discrete series of bursts to take
place, the RVE of roughly 3 nm diameter must be subjected to homogeneous shear
conditions for periods of �� � 6m s (cf. figure 2), to nucleate an embryonic shear
band. This translates into a critical indenter velocity of

Vi, crit ¼
3 nm

6ms
¼ 5� 10�7 m s�1 ð9Þ

for sampling of new RVEs under the indenter. If the applied indentation velocity is
much slower than this value, then there is ample time for the autocatalytic activation
of a shear band from the RVE. On the other hand, if the indentation velocity is
much higher than this value, then the autocatalytic process to nucleate a shear band
will be incomplete before the indenter has moved to sample different RVEs. As a
consequence, we expect that high indenter velocities will maintain homogeneous
flow. We imagine that, in this case, there is a field of shear transformations occurring
in many RVEs to accommodate the applied strain, without a single discrete event of
autocatalytic self-assembly into a shear band. A virtual field of less-correlated shear
transformations then carries the plastic strain. Alternatively, one can envisage shear
slip on many surfaces simultaneously as the indenter samples new RVEs with a rate
higher than can be accommodated by a single shear band event. In the broadest
sense, equation (9) gives a critical indentation rate beyond which the autocatalytic
shear band formation step cannot be observed as a discrete event.

The critical indentation velocity calculated in equation (9) falls in the midrange
of indentation velocities over which the discrete–continuous transition is observed
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(10�9–10�5m s�1 (figure 4)). The fact that this transition is observed experimentally
over a broad range of strain rates is most probably due to the usual local structural
variations in the amorphous metal alloy. Such variations allow significant changes in
both the size of the RVE and the duration �� of the nucleation event; the velocity
estimated in equation (9) can thereby vary over several orders of magnitude.

} 5. Summary and conclusions

Using instrumented nanoindentation on a glassy Pd–30 at.%Cu–10 at.%
Ni–20 at.%P alloy, we have identified a fundamental change in plastic deformation
behaviour as the rate of indentation is increased across several orders of magnitude.
At low deformation rates, plasticity occurs in discrete bursts, reminiscent of the
effects observed in incipient crystal plasticity under a nanoindenter. In the case of
amorphous alloys, these bursts are known to correlate with the operation of shear
bands, which form beneath the indenter tip and progress to the surface in a few
milliseconds. For our lowest indentation rate, we demonstrate that the entire plastic
strain accumulated during nanoindentation is due to such discrete events. In
contrast, higher rates do not show such prominent localization of plasticity, and
only a fraction of the measured plastic indentation depth can be ascribed to discrete
shear band events. At the highest indentation rates investigated, plasticity appears
completely homogeneous in time, with no evidence for discrete events associated
with shear banding.

The experimental observations have also been discussed with reference to an ideal
rigid–plastic solution for the flow field under an indenter. Coupled with mechanistic
theories for the initiation and propagation of plasticity in amorphous metals, this
approach gives critical geometric and kinetic insight into the experimental results.
The analysis implies that the nucleation of an embryonic shear band is the rate-
limiting step in shear localization and suggests a critical indentation velocity above
which this nucleation can no longer be observed as a discrete event. The predictions
of the model are quantitatively reasonable with respect to the experimental data for
Pd–30 at.%Cu–10 at.%Ni–20 at.%P.
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