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Abstract

Novel superhard nanocomposites prepared according to the generic design conceptwThin Solid Films 268,(1995) 64x, which
is based on the formation of the appropriate nanostructure due to strong segregation and spinodal decomposition, show an unusual
combination of mechanical properties, such as high intrinsic(i.e. not falsified by a large compressive stress) Vickers microhardness
from 40 toG100 GPa, high elastic recovery(up to G90%), high resistance against crack formation even at a large strain of
G10% and high thermal stability. We shall show that these properties can be relatively easily understood on the basis of
conventional fracture mechanics scaled down to dimensions of a few nanometers small nanocrystals and nanocracks, in
combination with a low concentration of possible flaws introduced into the material during its preparation. The latter is a
consequence of the ‘self-organization’ of the system due to the thermodynamically driven formation of the stable nanostructure.
� 2001 Elsevier Science B.V. All rights reserved.

Keywords: Nanocomposites; Superhard; Nanostructure; Mechanical properties

1. Introduction

A variety of superhard nanocomposites made of
nitrides, borides and carbides was prepared recently by
several research groups using plasma-induced chemical
and physical vapor deposition(CVD and PVD, respec-
tively, and laser ablation; for a recent review seew2x).
In the appropriately synthesized binary systems, the
hardness of the nanocomposite exceeds significantly that
given by the rule of mixtures in bulk. For example, the
hardness of nc-M Nya–Si N (MsTi, W, V,«) nano-n 3 4

composites with the optimum content of Si N close to3 4

the percolation threshold reaches 50 GPaw1–9x although
that of the individual nitrides does not exceed 21 GPa.
Similar results were reported also for several other
systems by other researchers(seew2x). In the case of a
binary solid solution, such as TiN C , the hardness1yx x

increases with increasingx monotonically from that of
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TiN to the hardness of TiC, thus following the rule of
mixturesw5x.
Recently, Musil et al. have achieved superhardness

also in coatings consisting of a hard transition metal
nitride and a soft metal which does not form thermo-
dynamically stable nitrides, such as nc-M N–M9 (Msn

Ti, Cr, Zr, M9sCu, Ni; for a review seew10x). However,
these systems have shown a low thermal stability and
decrease of the hardness upon annealing toG4008C
due to the relaxation of a high biaxial compressive stress
built in the films during the deposition and possibly also
due to a miscibility of the componentsw11,12x.
The generic concept for the design of novel, superhard

nanocomposites which are stable up to high temperatures
of G10008C, which is very important for their industrial
applications, is based on thermodynamically driven seg-
regation in binary(and ternary) systems which display
immiscibility and undergo spinodal decomposition even
at such temperaturesw1,7,8x. The condition for spinodal
decomposition in a binary system A B to occur is a1yx x

negative second derivative of the free energy of
formation of the mixed phase A B with an infinites-1yx x

imal change of the composition A B ,1yx"d x"d
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Fig. 1. Comparison of the indentation curves for ultrahard nanocomposites nc-TiNya–Si N ya– and nc-TiSi w25x (a) and the hardest diamond3 4 2

coating which we obtained from various laboratories(b). Notice that a lower applied load was used for the nc-diamond.

i.e. d (DG )ydx -0 w13x. Therefore, any small local2 0 2

fluctuation of the composition of the mixed phase
decreases the free energy of the system thus leading to
a spontaneous segregation. As a result, a nanocomposite
forms which remains stable against coarsening(Ostwald
ripening) as long as the conditiond (DG )ydx -02 0 2

remains validw13–15x.
In this paper we shall concentrate on such systems

that remain stable at a high temperature, retain their
superhardness and that were sufficiently characterized
in terms of the nanostructure, the composition of the
phases, thermal stability and mechanical properties. In
particular, we do not consider here coatings where the
measured enhancement of the apparent hardness and
elastic modulus were due to a high biaxial compressive
stress(seew2,16,17x and references therein). The latter
is commonly observed in PVD deposited films where
the compressive stress is typically 4–6 GPa and can
even exceed values of 10 GPa. For example, Herr and
Broszeit w18x reported a hardness of 72 GPa for HfB2

coatings sputter-deposited at a low pressure of 5=10y3

mbar which introduced a high biaxial compressive stress
of approximately 7 GPa. Upon annealing at 6508C the
stress and the hardness decreased to 2 and 17 GPa,
respectively. Musil et al.w19x reported hardness of 100
GPa for(TiAlV )N films deposited by sputtering at low
pressure and having also a high biaxial compressive
stress. These authors did not perform any annealing
experiments in order to verify what the real, ‘intrinsic’
hardness of their films was. Nevertheless, the hardness
of TiN coatings of approximately 80 GPa reported in
the same paper and of 70 GPa reported by the same
author in a later publicationw20x suggests that these
measured values were falsified by the high compressive
stress induced by energetic ion bombardment. However,
more recent results indeed support this vieww11,12x. In
order to exclude the possible artefacts due to(in the
majority of papers unknown) high compressive stress in
the films, we shall use here only those results where

either a low residual stress of-1 GPa was measured
and reported or the hardness did not change after
annealing up to the recrystallization temperature of 800–
11008C w7–9x.

2. The meaning of hardness and elastic modulus in
superhard nanocomposites as measured by means of
indentation

The measurement of the hardness of thin hard coatings
by means of indentation can be subject to a number of
errors(w2,21x and references therein), particularly when,
due to a small thickness of the films, small loads have
to be used which may cause an apparent increase of the
measured hardness(so called ‘indentation size effect’)
as found e.g. for ceramicsw22x and diamondw23x and
explained in terms of a finite distance between the
deformation bandsw22x. Therefore, our reported data are
based on: the load independent values(typically
between 50 and 200 mN where the indentation depth
does not exceed 10% of the film thickness of typically
4–20m); absence of creepw2,24x; and comparison with
Vickers hardness evaluated from the size of the remain-
ing plastic deformation measured in scanning electron
microscope(SEM) w25x. Because the superhard nano-
composites show a very high elastic recovery from 80
w1,6x to )90% w25x (see also Fig. 1) it is important to
compare the whole indentation curves with those of well
defined materials, such as diamond, as shown in Fig. 1.
One sees that the shape of the loading and unloading

curves are very similar, as are also the high value of the
‘universal hardness’ HU(the hardness under load, see
inserts in Fig. 1a,b) which underlines the high strength
of the nanocomposites. Although the shapes of the
unloading curves, from which the elastic modulus is
evaluated, suggest a predominantly elastic behavior, it
is important to check if the nature of the indentation
meets the criterion of elastic indentation response
according to classical Hertzian indentation solutionw26x.
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Fig. 2. The ‘Hertzian’ plot of the indentation depthh vs. applied load
L.

Fig. 3. Examples of the appearance of the remaining indentation into:(a) 3.5-mm thick ultrahard coating from Fig. 1a after applied load of 100
mN, (b) 10.7-mm thick superhard coating(H f40 GPa) with a load of 1000 mN.0.01

In first approximation, this can be assessed by means of
the Hertzian elastic response under a spherical indenter
of radius R and contact circle radiusa, assuming for
simplicity the same elastic moduli of the indenter and
the coating because of the close agreement of these
values(see Fig. 1). The analysis of the Hertzian inden-
tation into an elastic, semi-infinitive material gives a
dependence of the indentation depthh(L) on the applied
load L (for details see Timoshenko and Goodierw26x):

2w zB E1 E ØR 2
x |C FŽ .lnh L s yln q lnL (1)
y ~D G3 1.861 3

Fig. 2 shows the log–log dependence of the indenta-
tion depth on the applied load for the nc-TiNya–Si N3 4

ya– and nc-TiSi (Es607 GPa) and nc-diamond(Es2

454 GPa) coatings which corresponds to the indentation
curves in Fig. 1. One sees a very good log–log straight
line behavior with slopes 0.585 and 0.6 for the nc-
diamond and nc-TiNya–Si N ya– and nc-TiSi , respec-3 4 2

tively. The relatively small difference from the true
Hertzian slope for ideally elastic materials of 2y3s

0.667 is due to the fact that the indentations are not
purely elastic and that the indenter geometry of the
Vickers diamond is not exactly spherical. Taking the
plot of Fig. 2 and the elastic moduli of the materials of
the coatings, the radius of the tip of the indentor can be
calculated from Eq.(2):

1
2B EL 3

C Fhs1.23 (2)2D GE ØR

giving values ofRs0.448 and 0.385mm for nc-diamond
and nc-TiNya–Si N ya– and nc-TiSi coatings which3 4 2

are in a reasonably good agreement with each other and
with that of the Vickers diamond indenterw27x.
This analysis shows clearly that the major portion of

theh vs. L response as measured by the indentation into
the super- and ultrahard nanocomposite coatings is a
simple Hertzian elastic indentation. Furthermore, the
high values of the elastic moduli and of the universal
hardness HU(hardness under the maximum applied
load, Fig. 1) underline the fact that these materials are
indeed very strong, and that the observed extraordinary
high ‘plastic hardness’ is not due to any ‘rubber-like’
elastic response. Because rubber is not plastic, its hard-
ness cannot be related to a flow stress in terms of the
‘plastic hardness’ but rather to its elastic stiffness, which
would show as a very small universal hardness and
elastic modulus.
Beside of the elastic deformation there is also an

irreversible plastic deformation observed in the super-
hard nanocomposites whose energy corresponds to the
area between the loading and unloading curves and
which can be measured in micrographs taken after the
indentation(seew8,25x and below). Because the lack of
dislocation activity in 3–5-nm small nanocrystals, their
strength approaches the ideal value. Thus, the plastic
deformation must come from localized shear events
within the intercrystalline ‘amorphous’ component. Only
if of percolative nature, such shear events will result in
localization in the form of shear bands as reported by
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various researchers(e.g. w22x). However, because no
such deformation bands were observed in our nanocom-
posites in a large number of SEM micrographs even
after an indentation at a very high load(Fig. 3b), we
conclude that the individual shear events have remained
spatially isolated. Furthermore, the existence of a load
independent value of the measured plastic hardness,
together with the absence of deformation bands and
with the high thermal stability, lend a strong support to
the conclusion that the value of plastic hardness obtained
from the indentation measurement and checked by the
evaluation of the size of the remaining plastic defor-
mation do represent the correct properties of these
materials.
Another possible mechanism contributing to the plas-

tic deformation is densification of the material due to
the high pressure under the indenter(see below). Future
investigations by means of high resolution transmission
electron microscopy may help to answer the question
which of these possible mechanisms is dominant.

3. The origin of the enhancement of the measured
elastic modulus

It is generally accepted that hardness of bulk materials
scales with the value of shear modulus because the
plastic deformation of crystalline materials is due to
dislocation activity and the energy of a dislocation is
proportional to the shear modulusw28,29x. Therefore, it
was not surprising to find a similar correlation between
the indentation hardnessH and the elastic modulus
measured by the indentation technique(E ) in theind

superhard nanocompositesw1,6x. The ratio ofH yE3 2
ind

was discussed as an important criterion of the resistance
against plastic deformation for hard materials by Tsui et
al. w30x and emphasized as an important criterion of
mechanical properties for superhard nanocomposites by
Musil w10x. However, the very high values of the
composite elastic modulus as found for superhard nan-
ocomposites which are in the range of diamond or even
higher(see e.g. Fig. 1a above and Fig. 1 in Musilw10x)
pose the question regarding their physical meaning. Let
us therefore consider which fundamental properties of a
material determine its elastic constants.
The bulk modulusB is given by the second derivative

of the crystal energyU with dilatation w31x:c

y1B E 2Ž .d VyV0 d UC2C FBsy sV (3)mole 2D GdP dV

In other terms, the bulk modulus is a measure of the
increase of the crystal energy with a change of the
volume imposed by an external hydrostatic pressure as
given by the third term in Eq.(4):

2B E B EdU 1 d UC C
C F C FU (V)sU (V )q ØdVqC C 0 2D G D GdV 2 dVV V0 0 (4)

2ØdV q«

Here V is the molar volume at zero pressure and0

U (V ) is the crystal energy at equilibrium, i.e.C 0

. Thus, the increase of the crystal energy(dU ydV) s0C V0

upon hydrostatic pressure is given by the increase of the
curvature of the potential surface in three dimensions.
In a similar way, Young’s modulusE can be approxi-y

mated by the second derivative of the binding energy
with bond distance and related to the shear modulus by
the equationGsE y2(1qn) wheren is the Poisson’sy

ratio w32x. These relations have a simple physical mean-
ing: the higher the interatomic binding energy and
coordination number and smaller the bond distance, the
higher the elastic moduli. Carbon in its diamond poly-
morph meets best the condition of the combination of a
high covalent interatomic bond energy, the highest coor-
dination number for covalent bond and a small intera-
tomic distance. Therefore, it has the highest values of
elastic moduli. Unlike the strength and hardness, which
are limited by flaws in materials(dislocations and
microcracks) and therefore orders of magnitude smaller
than the ideal values, elastic moduli are determined by
the atomic structure. For these reasons, values of elastic
modulus of the superhard nanocomposites in the range
of diamond or even higher, as measured by an indenta-
tion technique, are suspected to be an artefact of that
technique.
The ‘effective’ elastic modulusE is calculated fromeff

the slopeS of the unloading portion of the indentation
curve asw21,27,32x (hereb is a constant given by the
indenter geometry andA is the contact area between the
indenter and the material to be measured, elastic mod-
ulusE , Poisson’s ration )i i

ySØ p
E s (5)eff

y2b A

and corrected for the elastic deformation of the indenter
2 21 1yn 1ynis q (6)

E E Eeff i

in order to obtain the elastic modulus of the materialE.
Based on Sneddon’s solution for the indentation of an
elastic half-space by a rigid axisymmetric indenterw33x,
the latter is usually associated with the Young’s modulus
w21,27x. However, Sneddon’s solution appeared to be
somewhat inaccuratew34,35x and for superhard materials
further effects should be accounted for. One of them is
the so far unknown mechanism of the deformation of
the material and of the indenter, which means that the
measured modulusE is likely to be a more complexind

combination of the elastic constants. The other, more
illustrative effect is the very high pressure under the
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Fig. 4. Elastic modulus of nc-TiNya–Si N ya– and nc-TiSi nanocom-3 4 2

posites measured by indentation and corrected for the deformation of
the diamond indenter vs. the plastic hardness.

indenter present during the measurement on such mate-
rials. Let us consider this problem in some detail.
As already pointed out by Taborw36x the indentation

hardnessH is a direct measure of the average pressure
P under the indenter,

H(GPa)(const.ØP(GPa) (7)

where the constant accounts for the difference between
the projected area of the indentation and the exact area
of the contact between the indenter and the material(for
Vickers indenter it is equal to 0.927). Under conditions
of yielding (i.e. plastic deformation) of the material
under the indenter, the yield pressure is essentially
constant and independent of the applied load:

H L
Ps s (8)

const. A

whereA is the area of the remaining indentation. The
higher the hardness the smaller the areaA and the higher
the average pressure under the indenter, i.e.

P(Lsconst..)AH (9)plast

Of course, the distribution of the stress under the
indenter is complex. It was calculated only for several
simple casesw36,37x. Nevertheless, for a given, constant
applied loadL the pressure under the indenter increases
with increasing hardness as seen from Eq.(8) and Eq.
(9) and can reach very high values of the order of 40–
60 GPa for superhard nanocomposites.
An example par excellence of high compressive stress

upon the indentation process is the semiconductor-to-
metal transition in silicon which commences at approx-
imately 11.3 and is completed at 12.5 GPa. This
transition is observed upon indentation with a Vickers
indenter at an applied load of approximately 30–40 mN
and it is best seen on the unloading curve. It is2

accompanied by a strong decrease of electric resistivity
of silicon within the indentation area(see w38x and
references therein). Gridneva et al. reported the semi-
conductor-to-metal transition upon indentation in Si, Ge,
InSb and GaAs and has shown that the pressure under
the indenter at which this transition occurs determines
the measured hardness of the given materialw39x.
Fig. 4 shows the elastic moduli of a number of nc-

TiN ya–Si N ya– and nc-TiSi nanocomposites meas-3 4 2

ured by indentation and corrected for the elastic
deformation of the diamond indenter. The samples dif-
fered only by the total content of silicon(between 0
and approx. 20 at.%), different fractions of the amor-
phous a–Si N and amorphous and nanocrystalline3 4

This transition appears as a ‘noise’ on the loading curve and as2

a sudden jump of the unloading curve to a lower indentation depth
when a maximum load used for the Vickers indenter does not exceed
100 mN. However, if a larger load ofG150 mN is used, a similar
jump is found upon unloading at approximately 120–140 mN due to
cracking and peeling of the material.

TiSi and different crystallite size, the main component2

being TiN w25x. In spite of that, the elastic indentation
modulus varied by almost a factor of 4 showing a
proportionalityE f(3.75"0.27) H. Our earlier pub-ind

lished binary superhard nanocomposites nc-TiNya–
Si N , nc-W Nya–Si N and nc-VNya–Si N have3 4 2 3 4 3 4

shown also a linear increase of the elastic modulus with
the plastic hardness having somewhat larger proportion-
ality factors w1,5,6x. Musil summarized similar data for
several other superhard nanocomposite coatings prepared
by reactive sputtering and obtained a proportionality
factor of approximately 5(Fig. 1 in w10x ). Thus, the3

experimental data available so far for a fairly large
number of different superhard nanocomposites show an
approximately linear increase of the elastic modulus
with the plastic hardness as measured by the indentation,
the proportionality factor being between approximately
3.7 and 9.
Let us now consider the dependence of elastic moduli

on pressure. The increase of bulk modulus with pressure,
is due to the increase of the crystal energy with≠By≠P

decreasing distances between the atoms, i.e. due to the
increasing curvature of the interatomic potential surface.
That increase depends on the nature of binding and of
the crystal lattice, but the values of the first derivative
of B with P, , are within a relatively small range≠By≠P

Although — as mentioned above — in some of these coatings3

prepared by plasma PVD the apparent plastic hardness is most
probably enhanced by the high compressive biaxial stress the corre-
lation between the measured elastic modulusE and the values ofind

that hardness still represents the effect of the pressure under the
indenter because Eqs.(7) and(8) remain valid.
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of approximately 3–8 for the majority of materials, as
summarized below.
Grover et al.w40x have shown that under compression,

the logarithm of the isothermal bulk modulus of many
metals increases almost linearly with the decrease of the
specific volumeyDVyV up to volume changes of0

40%. The slope of these dependencies varied for differ-
ent metals within the range of approximately 3–8 in
agreement with theoretical calculationsw41,42x and
many later experimental data(e.g. w43,44x). Rose et al.
w45x derived a universal zero-temperature equation of
state which allowed them to calculated the first deriva-
tive of bulk modulus as a universal function of the ratio
of the Wigner–Seitz atomic radius at equilibrium,r ,WSE

to the width of the interatomic binding energy curvel,
which corresponds to the anharmonicity of the crystal.

B E≠B 2.3rWSE
C F s1q (10)
D G≠P 3 lT

This expression yields theoretical values in a fairly
good agreement with the experimental ones for a large
number of solids(see Table III in w45x). In a more
recent paper these authors extended their consideration
also to the interfacesw46x. Thus, the pressure depend-
ence of elastic moduli can be fairly well approximated
by proportionality:

B(P)sB qAØP (11)0

with B being the bulk modulus at zero pressure andA0

is a constant for a given material with a value between
approximately 3 and 8. Similar pressure dependences of
Young’s and shear moduli is a consequence of their
mutual relationships via the Poisson’s ratiow32x.
The close quantitative similarity between the meas-

ured proportionality for the indentation elastic modulus
E found for superhard nanocomposites(see above)ind

and in Eqs.(7)–(9) and Eq.(11) strongly supports the
idea that the high values ofE measured for theind

superhard nanocomposites under a very high pressure of
many 10 GPa are due to the pressure enhancement and,
thus, an artefact of that technique. Because such a
pressure enhancement is relatively small for softer mate-
rials it is not surprising that theirE values agreeind

within the accuracy of the measurements with those
measured by other techniquesw47x. Independent meas-
urements of the elastic moduli of superhard nanocom-
posites by means of other techniques and detailed finite
element modeling of the indentation process are highly
desirable.

4. The high elastic recovery, energy of the elastic
deformation and resistance against crack formation

The energy of elastic deformation as measured in the
indentation experiment can be estimated from the area
between the unloading curve and they-axes in Fig. 1

hmax

U s L(h)Ødh (12)el |
0

to be approximately 1=10 J. Similar values can bey8

estimated also from a number of other indentations on
such coatings. Assuming the total area of the deforma-
tion under the maximum applied load of 0.07 N(Fig.
1a) to be approximately four times the area of the
permanent, plastic deformation as obtained from the
load-depth sensing indentation measurements and SEM
micrographs(see Fig. 3a), we estimate the elastic energy
density of approximately 3=10 J m , and finally the8 y3

specific elastic energy of approximately 3 kJ mole .y1

Let us compare this value with the elastic energyUel

of an ordinary solid, in its linear range, as given by Eq.
(13).

2B EB DV
C FU sV Ø Ø (13)el. mole
D G2 V el

wHere, is the bulk modulus(of approx.F500 GPa)B
and (DVyV) is the true elastic dilatation.x Assumingel

as an upper limit for the elastic dilatation of 1%(i.e.
much higher than what is typically found for hard
materials) and V f10 cm (10 m ), the elastic3 y5 3

mole

energy density of the order of 0.5 kJymole results which
is much smaller than the elastic energy density estimated
from the indentation in the superhard materials. Let us
briefly discuss the possible reasons for this discrepancy.
The possibility, that the elastic deformation extends

to a much larger volume is unlikely because one would
have to assume a total lateral area of a uniform elastic
deformation to be approximately 24 times larger than
that of plastic deformation. This is just the opposite as
generally found because the elastic strain decreases very
strongly with the distance from the center of the contact
between the indenter and the material(see also the SEM
micrographs in Fig. 3).
More likely, the nanostructured superhard nanocom-

posites can indeed sustain a much larger strain than the
conventional hard materials for the following reasons:
In the nanostructured materials with 3–5-nm size eqiax-
ed nanocrystals, the extension of the possible initial
flaws induced by the high applied stress are at the scale
of F1 nm, i.e. at a scale comparable with interatomic
bond distance. It is well known that the rupture strain
of interatomic bond can reach up to 20%. Moreover, the
stress concentration factorw32x of such small nanocracks
of approximately 2–4 remains very small thus preventing
their catastrophic growthw9x.
Thus, the high elastic energy density can be explained

by a mechanism called ‘reversible non-linear flexing’
which is shown schematically in Fig. 5. The first
derivative of the binding energy with bond distance
(Fig. 5a) is the ‘restoring force’ which develops upon
elastic deformation of interatomic bonds. The part of
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Fig. 5. (a) First derivative of the binding energy with bond distance;
x is the equilibrium bond distance.(b) Flexing of the bonds across0

the interface between the nanocrystals(see text).

that curve for bond distancexGx is called the ‘funda-0

mental decohesion curve’. A single isolated bond would
break when, under a constant applied stress when the
dilatation associated withx exceedsx . However, if them

cohesion of the nanostructure is provided by the attached
nanocrystals, a much larger local strain in the interfaces
in the flexing of x -x-x will be reversible because0 m

the restoring forcedE ydx)0 (Fig. 5a) and the inter-b

action between the atoms persists(Fig. 5b). The elastic
energy of the flexing with a dilatation corresponding to
x is the area under the curve betweenx andx . If theC 0 C

elastic strain energy associated with the elastic defor-
mation of the attached nanocrystals remains less than
the energy of flexing of the bonds across the interface,
the system will continue to be stable and reversible and
the energy of flexing of the entire system will fully
recover upon unloading. Because the energy density of
flexing per unit of the flexed volume will now be very
high as compared with that of linear elastic deformation
of conventional materialswEq. (12)x, flexing within a
relatively small fraction of interfaces is sufficient to
explain the high elastic energy associated with the high
elastic recovery(for a more quantitative estimate see
Veprek and Argonw15x).
The observed high resistance of the superhard nano-

composites against crack formation can be also under-
stood in terms of conventional fracture mechanics scaled
down to dimensions of 1–2 nm. As already mentioned,
the stress concentration factor based on nanoscale flaws
is low and, therefore, the stress needed to propagate

such a small nanocrack is very high. Moreover, the
propagation of such nanocracks in the three dimensional
nanocomposites involves much deflection and branching
of the plane of the cracks which again hinder the growth
of the nanocracks. Last but not least, the self-organiza-
tion of the system due to the thermodynamically driven
spinodal segregation results in a very low concentration
of built-in flaws. Thus, the remarkably high resistance
of these nanocomposites against crack formation is
easily understood in the terms of a high threshold for
the initiation of larger microcracks which may lead to
their catastrophic growthw25x. One does not need to
evoke any enhancement of fracture toughness as defined
by the stress intensity factor or energy release ratew32x
for which there is no rational physical justification.

5. Conclusions

An analysis of the indentation curves measured on
superhard nanocomposites in terms of Hertzian elastic
response shows that they are indeed strong materials.
The unusual combination of high plastic hardness with
high elastic recovery and high resistance against crack
formation and growth can be understood on the basis of
conventional fracture mechanics scaled down to dimen-
sions of a few nanometer sized nanocrystals and nano-
cracks, in a combination with a low concentration of
possible flaws introduced into the material during its
preparation. The latter is a consequence of the ‘self-
organization’ of the system due to the thermodynami-
cally driven formation of the stable nanostructure by the
spinodal decomposition, and it provides these systems
also the observed surprisingly high thermal stability.
The observed high resistance of such coatings against

crack formation upon the indentation is a consequence
of a very low concentration of critical flaws as a result
of the self-organization of the nanostructure. It is unnec-
essary to evoke any enhancement of the fracture tough-
ness in terms of stress intensity factor or energy release
rate for which a physical basis was lacking.
The strong enhancement of the elastic modulusEind

measured for the superhard nanocomposites by means
of the indentation technique is most probably due to a
very high pressure under the indenter. The measured
correlation ofE with H for a variety of superhardind plast

coatings supports this suggestion.
Extreme care should be exercised when measuring

superhardness in thin coatings. In particular it is neces-
sary to check if the apparent ‘superhardness’ is an
intrinsic property of that material and not falsified by a
high biaxial compressive stress or a too low load used
for the measurements. Such coatings will loose their
superhardness when annealed to a temperature of 500–
6008C (or even less) w11,12x.
Because of the limited available space we could not

develop all the ideas here in sufficiently quantitative
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detail. These details will be provided in the forthcoming
full-length paperw15x.
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