Name _

Please email my grade

18.01a Exam 3, ESG Fall 2007

 $50\ {\rm minutes.}\ {\rm No}\ {\rm books},$ notes or calculators.

8 pages, 7 problems

You should read through all these formulas before starting the exam

Poisson random variable: $P(k) = e^{-m} \frac{m^k}{k!}, k = 0, 1, 2, ..., mean m.$

Exponential density function: $f(x) = \frac{e^{-x/m}}{m}$, mean m.

Normal density function: (mean *m*, standard deviation σ): $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-m)^2/2\sigma^2}$.

Standard normal density function $\phi(z)$ is the above f(z) with $m = 0, \sigma = 1$.

Useful integral formula: $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}.$

Table of values for $\Phi(z)$, $Z \ge 0$, the distribution for $\phi(z)$

z:	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
$\Phi(z)$	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159	
z:	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	
$\Phi(z)$	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713	
z:	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
$\Phi(z)$	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981	0.9987

Problem 1. (25 points)
A. (9) Does
$$\sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{n^2+1}$$
 converge? Show work or indicate reasoning.
B. (8) Does $\sum_{n=2}^{\infty} \frac{1}{\ln(n^3)}$ converge? Show work or indicate reasoning.
C. (9) By a supervised to an intermal shore that $\sum_{n=1}^{\infty} \frac{1}{n} < \pi$

C. (8) By comparing to an integral show that $\sum_{n=1}^{\infty} \frac{1}{n^2+1} < \frac{\pi}{2}$.

Problem 2. (10 points) If $f(x) = 1 - 2x + 3x^2 - 4x^3 + 5x^4 - \dots$, find a simple expression for f(x), i.e., sum the series explicitly.

Problem 3. (15 points)

Let X be a continuous random variable with range [0, 1] and density Ax^3 . Find A, E(X) and $\sigma(X)$.

A. (5) For each function say whether or not it could be the cumulative distribution of a random variable in the given range. If not, give a reason.

B. (5) For each function say whether or not it could be the density of a random variable in the given range. If not, give a reason.

Problem 5. (15 points)

A cookie maker knows that on average there are 3 broken cookies per box.

A. (7) What's the probability of no broken cookies in a box?

B. (8) What's the probability of more than 5 broken cookies in 10 boxes? Give a numerical expression for this, but do not try to simplify it.

Problem 6. (15 points)

Suppose parents tended to pick up their children an average of 5 minutes late from a daycare center. Assume the amount of time a random parent is late on any given day is an exponential random variable.

A. (5) How late is the average parent?

B. (5) What is the probability that a parent will be more than 15 minutes late?

C. (5) The daycare center decides to charge parents t^2 cents if they are t minutes late. What is the average family's daily late fee?

Problem 7. (10 points)

From a certain orchard the average weight of an apples is 400 grams with a standard deviation of 20 grams. Assuming the weight follows a normal distribution, how many apples in a box of 100 would you expect to weigh more that 420 grams?