18.01a Exam 3, ESG Fall 2007

50 minutes. No books, notes or calculators.
8 pages, 7 problems
You should read through all these formulas before starting the exam
Poisson random variable: $\quad P(k)=\mathrm{e}^{-m} \frac{m^{k}}{k!}, k=0,1,2, \ldots$, mean m.
Exponential density function: $f(x)=\frac{\mathrm{e}^{-x / m}}{m}$, mean m.
Normal density function: (mean m, standard deviation σ): $\quad f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(x-m)^{2} / 2 \sigma^{2}}$.
Standard normal density function $\phi(z)$ is the above $f(z)$ with $m=0, \sigma=1$.
Useful integral formula: $\int_{0}^{\infty} x^{n} \mathrm{e}^{-a x} d x=\frac{n!}{a^{n+1}}$.

Table of values for $\Phi(z), \quad Z \geq 0$, the distribution for $\phi(z)$

$z:$	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
$\Phi(z)$	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159	
$z:$	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	
$\Phi(z)$	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713	
$z:$	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
$\Phi(z)$	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981	0.9987

Problem 1. (25 points)
A. (9) Does $\sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1}$ converge? Show work or indicate reasoning.
B. (8) Does $\sum_{n=2}^{\infty} \frac{1}{\ln \left(n^{3}\right)}$ converge? Show work or indicate reasoning.
C. (8) By comparing to an integral show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}<\frac{\pi}{2}$.

Problem 2. (10 points)
If $f(x)=1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\ldots$, find a simple expression for $f(x)$, i.e., sum the series explicitly.

Problem 3. (15 points)
Let X be a continous random variable with range $[0,1]$ and density $A x^{3}$. Find $A, E(X)$ and $\sigma(X)$.

Problem 4. (10 points) The following are graphs of functions.

Function (i)
range $=(-\infty, \infty)$

Function (iv)
range $=(-\infty, \infty)$

Function (ii)
range $=(-\infty, \infty)$

Function (v)
range $=[0, \infty)$

A. (5) For each function say whether or not it could be the cumulative distribution of a random variable in the given range. If not, give a reason.
B. (5) For each function say whether or not it could be the density of a random variable in the given range. If not, give a reason.

Problem 5. (15 points)
A cookie maker knows that on average there are 3 broken cookies per box.
A. (7) What's the probability of no broken cookies in a box?
B. (8) What's the probability of more than 5 broken cookies in 10 boxes? Give a numerical expression for this, but do not try to simplify it.

Problem 6. (15 points)
Suppose parents tended to pick up their children an average of 5 minutes late from a daycare center. Assume the amount of time a random parent is late on any given day is an exponential random variable.
A. (5) How late is the average parent?
B. (5) What is the probability that a parent will be more than 15 minutes late?
C. (5) The daycare center decides to charge parents t^{2} cents if they are t minutes late. What is the average family's daily late fee?

Problem 7. (10 points)
From a certain orchard the average weight of an apples is 400 grams with a standard deviation of 20 grams. Assuming the weight follows a normal distribution, how many apples in a box of 100 would you expect to weigh more that 420 grams?

