18.01a Practice Exam 1, ESG Fall 2007

No books, notes or calculators.
You should be able to do this in about 65 minutes. The real test will be a shorter. Remember to study all the material. Not everything is on the practice exam.
Problem 1. (8) Find the best quadratic approximation to $f(x)=\frac{\mathrm{e}^{x}}{1+x}$ for $x \approx 0$.
Problem 2. (7) Find $\lim _{x \rightarrow 0} \frac{1-\mathrm{e}^{\left(x^{2}\right)}}{\sin ^{2} x}$.
Problem 3. (15)
a) (5) State the Mean Value Theorem (MVT).
b) (10) Using the MVT show that $\tan x>x$ for $0<x<\pi / 2$.

Problem 4. (10) Find the first four non-zero terms in the Taylor series around $a=0$ for the function $\frac{1}{(1+x)^{2}}$.

Problem 5. (15) Radioactive material decays exponentially. Assuming consistent units, if you have an amount A then after a time t there will be $A \mathrm{e}^{-k t}$. (k is called the decay constant.) Suppose a new nuclear storage facility takes in radioactive material at the rate of $1-(t-1)^{2} \mathrm{~kg} /$ year for its first 2 years of operation. Assume a decay constant of k and show how to write an integral for the amount of radioactive material at the end of the 2 years. (You don't have to compute the integral, but you do have to show reasoning.)

Problem 6. (10) Compute $\int_{2}^{3} \frac{(1+\ln x)^{7}}{x} d x$.
Problem 7. (20) For this problem we have $f(x)=x^{3}$ and we consider the region between the graph of $f(x)$ and the y-axis for $-1 \leq x \leq 1$.
a) (10) Compute the volume of revolution when this region is revolved around the y-axis.
b) (10) Write down an integral expressing the arclength of the graph of $f(x)$. (You do not need to compute the integral.)

Problem 8. (20) Consider the function $F(x)=\int_{0}^{x} \sqrt{3+\sin t} d t$. Without attempting to find an explicit formula for $F(x)$,
a) (5) Determine whether $F(x)$ is concave up or concave down in the interval $0<x<1$.
b) (5) Show that $F(1) \leq 2$.
c) (5) Give $\int_{1}^{2} \sqrt{3+\sin 2 t} d t$ in terms of $F(x)$. (Notice the factor of 2 in the sin term.)
d) (5) Let $G(x)=\int_{0}^{x^{2}} \sqrt{3+\sin t} d t$. Compute $G^{\prime}(x)$.

Problem 9. (15) Consider the first hump of the graph of $y=\sin x$.
a) (10) Find the average distance from this curve to the line $y=-1$.
b) (5) Find the average distance from this curve to the y-axis.

