18.02a Practice Exam 4, ESG Fall 2007

No books, notes or calculators. This should take about 80 minutes. The actual test will be shorter-designed to take 50 minutes.

Problem 1. The square with vertices $A=(1,1), B=(1,-1), C=(-1,-1)$ and $D=(-1,1)$ in the $x y$ plane is the base of a pyramid. The point P at the apex of the pyramid is on the z-axis at a height 2 .
a) Give the components of the vectors $\overrightarrow{\mathbf{P A}}$ and $\overrightarrow{\mathbf{P B}}$.
b) Find the angle on one of the faces at the apex.
c) Find the area of any one of the four faces touching the apex.

Problem 2. Let $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$.
a) Find A^{-1}.
b) Use part (a) to solve $x+z=1,3 x+2 y+z=0, x+y+2 z=4$.
c) For what c will the system of equations $x+z=0,3 x+2 y+z=0, x+y+c z=0$ have a non-zero solution?
d) For the value of c found in part (c) find a non-zero solution to the system.

Problem 3.

If $A=(1,2,3), B=(2,2,4), C=(5,4,5), D=(2,3,5)$ compute the volume of the parallelpiped shown.

Problem 4.
a) Write the equation of the plane containing the three points $(1,1,1),(1,2,1),(2,2,3)$.
b) Find the distance from the point $(0,0,3)$ to the plane in part (a).

Problem 5. Find the intersection of the line $(x, y, z)=(2,3,0)+t(1,3,5)$ and the plane $2 x-3 y+z=7$.

Problem 6.

a) Write the curve $y=\sin x$ in parametric form $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
b) For your answer in part (a) find: $\frac{d \mathbf{r}}{d t}, \frac{d s}{d t}, \mathbf{T}(t), \frac{d \mathbf{T}}{d s}, \kappa$. (Note: some of the derivatives are messier than our typical problem -work carefully.)

Problem 7. Let P be a point halfway along a radius of a circle of radius a. Use vector methods to write the parametric equations for the curve traced out by P as the circle rolls along the x-axis. Assume the circle starts with both its center and P on the y-axis.

