18.01A Problem Set 2b
 (due Thurs., Sep. 27 (pset 2a due at same time))

Part I (15 points)

$\mathrm{TB}=$ Simmons; $\mathrm{SN}=18.01 \mathrm{~A}$ Supplementary Notes (all have solutions) The problems marked 'other' are not to be handed in.

Class 8 (Tues., Sep. 25) Integration: substitution, trigonometric integrals, completing the square.

Read: TB: 10.2, 10.3, 10.4.
Hand in: 5B/7, 9, 13, 16; 5C/6, 9, 11; 5D/1, 2, 7, 10.
Others: $5 \mathrm{~B} / 11 ; 5 \mathrm{C} / 4,5,7$.
Class 9 (Wed., Sep. 26) Integration: partial fractions.
Read: TB: 10.6, SN: F
Hand in: $5 \mathrm{E} / 3,5,6,10 \mathrm{~h}$ (complete the square)
Others: 5E/2, 8b, 9b, 10ac.
Class 10 (Thurs., Sep. 27 pset 2 due) Integration by parts, numerical integration.
Read: TB: 10.7, 10.9.

Part II (20 points)

Directions: Try each problem alone for 20 minutes. If, after this, you collaborate, you must write up your solutions independently.

Problem 1 (Class 8, 3 pts: 2,1)
a) Textbook 10.3/26.
b) Use this to integrate $\tan ^{5} x$.

Problem 2 (Class 8, 3 pts)
Textbook 10.4/31. (Hint: substitute for $x-b$.)
Problem 3 (Class 9, 4 pts: 2,2)
a) Find a formula for $\int \sec x d x$ by writing $\sec x=\frac{\cos x}{1-\sin ^{2} x}$ and making a substitution for $\sin x$.
b) Connvert your answer in part (a) to the more familiar formula,

$$
\int \sec x d x=\ln |\sec x+\tan x|+C
$$

by multiplying the top and bottom of the fraction by $1+\sin x$. (Remember: $\ln \sqrt{u}=\frac{1}{2} \ln u$.)

Problem $4 \quad$ (Class 9, 5 pts: 3,2)
A simple model for the spread of an infectious disease is $\frac{d x}{d t}=k x(1-x)$, where x is the fraction of the population with the disease, $1-x$ is the healthy fraction of the population and $k>0$ is a constant of proportionality. (The model says the rate of spread is proportional to the number of contacts between healthy and sick individuals.)
a) This is a differential equation which can be solved by 'separating variables', i.e.

$$
\frac{d x}{x(1-x)}=k d t .
$$

Integrate both sides of this equation and solve for x as a function of t.
b) What happens in the long run?

Problem 5 (Class 8, 5 pts: 2,3)
a) Textbook 10.3/29.
b) Use this same technique to find a reduction formula for $\int \sec ^{n} x d x$.

