18.01A Problem Set 4 Part I Solutions

For a number of these solutions we use the following notes:
N1. $\int \frac{\mathrm{e}^{-t / m}}{m} d t=-\mathrm{e}^{-t / m}$.
N 2 . $\int t \frac{\mathrm{e}^{-t / m}}{m} d t=-t \mathrm{e}^{-t / m}-m \mathrm{e}^{-t / m}$.
N3. $\int t^{2} \frac{\mathrm{e}^{-t / m}}{m} d t=-t^{2} \mathrm{e}^{-t / m}-2 m t \mathrm{e}^{-t / m}-2 m^{2} \mathrm{e}^{-t / m}$.
N4. $\lim _{t \rightarrow \infty} t^{k} \mathrm{e}^{-m t}=0$ for any k.

8A-1

a) $P(X$ is divisible by 3$)=P(X=3,6,9,12)=4 / 12=1 / 3$.
b) $P(X$ is divisible by 5$)=P(X=5,10)=2 / 12=1 / 6$.

8A-3 Number of players $=24 ;$ number of players with even sizes $=11$.
$\Rightarrow P($ even size $)=11 / 24 . \Rightarrow P($ odd size $)=1-11 / 24=13 / 24$.

8A-4

a) $P(n$ even $)=P(n=2,4,6, \ldots)=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\ldots=$ geometric series with ratio $\frac{1}{4}$. \Rightarrow probability $=\frac{1}{4} \cdot \frac{1}{1-1 / 4}=\frac{1}{3}$.
b) $P(n$ odd $)=1-P(n$ even $)=2 / 3$.
c) We need to be slightly clever.
$P(X=2$ or $X=3)=\frac{1}{4}+\frac{1}{8}=\frac{6}{16}, \quad P(X \geq 5)=\frac{1}{2^{5}}+\frac{1}{2^{6}}+\ldots=\frac{1}{2^{5}} \cdot \frac{1}{1-1 / 2}=\frac{1}{16}$.
$\Rightarrow \frac{6}{16}=P(X=2$ or $X=3)<P(X$ is prime $)<P(X=2$ or $X=3$ or $X \geq 5)=\frac{6}{16}+\frac{1}{16}=\frac{7}{16}$.
8A-6 Let $X=$ number of calls. $\quad X$ Poisson with mean $5 \Rightarrow P(X=k)=\mathrm{e}^{-5} \cdot \frac{5^{k}}{k!}$.
$\Rightarrow P(X \geq 3)=1-P(X=0$ or $X=1$ or $X=2)=1-\mathrm{e}^{-5}\left(1+5+\frac{25}{2}\right) \approx .875$.
8A-7 Let $X=$ number of errors on a page.
Sparse distribution \Rightarrow Poisson of mean $m \Rightarrow P(X=k)=\mathrm{e}^{-m} \cdot \frac{m^{k}}{k!}$.
We're given $P(X=0)=.2$. This $\Rightarrow \mathrm{e}^{-m}=.2 \Rightarrow m=\ln (5) \approx 1.61$.
a) $P($ at most one error $)=P(X=0$ or $X=1)=\mathrm{e}^{-m}(1+m) \approx .52$.
b) Let $X_{3}=$ number of errors on 3 pages. This is still Poisson with mean $=3 \mathrm{~m}$.

$$
\begin{aligned}
\Rightarrow P\left(X_{3} \leq 3\right) & =P\left(X_{3}=0 \text { or } X_{3}=1 \text { or } X_{3}=2 \text { or } X_{3}=3\right) \\
& =\mathrm{e}^{-3 m}\left(1+(3 m)+(3 m)^{2} / 2+(3 m)^{3} / 6\right) \approx .29
\end{aligned}
$$

8A-8 Let $X=$ number of errors on a page.
Given $E(X)=\frac{600}{950} \approx .63:=m$.
Sparse \Rightarrow Poisson with mean $m \Rightarrow P(X=k)=\mathrm{e}^{-m} \cdot \frac{m^{k}}{k!}$.
a) Let $X_{10}=$ number of errors in 10 pages, X_{10} is Poisson with mean 10 m .
$\Rightarrow P($ no errors $)=P\left(X_{10}=0\right)=\mathrm{e}^{-10 m} \approx .002$.
b) Let $X_{5}=$ number or errors in 5 pages, X_{5} is Poisson with mean 5 m .
$\Rightarrow P($ at least one error $)=P\left(X_{5} \geq 1\right)=1-P\left(X_{5}=0\right)=1-\mathrm{e}^{-5 m} \approx .96$.
$\mathbf{8 B} / \mathbf{2}$. Let t be the time between sales.
Exponential distribution $\Rightarrow f(t)=\frac{\mathrm{e}^{-t / m}}{m}$. (Range of values $\left.=[0, \infty).\right)$
We're given mean $=m=4 / 5$.
a) Using notes N1 and N4 above:
$P(t>2)=\int_{2}^{\infty} f(t) d t=-\left.\mathrm{e}^{-t / m}\right|_{2} ^{\infty}=-0+\mathrm{e}^{-2 / m}=\mathrm{e}^{-5 / 2} \approx .082=8.2 \%$.
b) $P(t<4)=\int_{0}^{4} f(t) d t=-\left.\mathrm{e}^{-t / m}\right|_{0} ^{4}=-\mathrm{e}^{-4 / m}+1=1-\mathrm{e}^{-5} \approx=.993=99 \%$.
$8 \mathrm{~B} / 3$. Let $t=$ waiting time between births.
Assume exponential $\Rightarrow f(t)=\frac{\mathrm{e}^{-t / m}}{m}$. (Range of values $\left.=[0, \infty).\right)$
We're given mean $=m=1 / 6$ minute .
$P(1 \leq t \leq 2)=\int_{1}^{2} f(t) d t=-\left.\mathrm{e}^{-t / m}\right|_{1} ^{2}=-\mathrm{e}^{-2 / m}+\mathrm{e}^{-1 / m}=\mathrm{e}^{-6}-\mathrm{e}^{-12} \approx .0025=.25 \%$
$8 \mathrm{~B} / 5$. Let $t=$ waiting time between flats.
Assume exponential $\Rightarrow f(t)=\frac{\mathrm{e}^{-t / m}}{m}$. (Range of values $\left.=[0, \infty).\right)$
We're given mean $=m=100$.
Want time t_{0} so that $P\left(t>t_{0}\right)=.9$.
Again using notes N1 and N4 above:
$P\left(t>t_{0}\right)=\int_{t_{0}}^{\infty} f(t) d t=-\left.\mathrm{e}^{-t / m}\right|_{t_{0}} ^{\infty}=-0+\mathrm{e}^{-t_{0} / m}=\mathrm{e}^{-t_{0} / 100}$.
Solving for t_{0} so that $P\left(t>t_{0}\right)=.9$ gives $-t_{0} / 100=\ln (.9)$
$\Rightarrow t_{0}=-100 \ln (.9) \approx 10.536$ days.
8C/1a \quad Mean $=m=3.5=7 / 2$.
Method 1. $\sigma^{2}=\left(\sum x_{i}^{2} P\left(x_{i}\right)\right)-m^{2}$:
$\sigma^{2}=\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)-(3.5)^{2}=\frac{91}{6}-\frac{49}{4}=\frac{70}{24} . \Rightarrow \sigma=\sqrt{70 / 24} \approx 1.708$.
Method 2. $\sigma^{2}=\sum\left(x_{i}-m\right)^{2} P\left(x_{i}\right)$:

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{6}\left((1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right) \\
& =\frac{1}{6}\left(\frac{25}{4}+\frac{9}{4}+\frac{1}{4}+\frac{1}{4}+\frac{9}{4}+\frac{25}{4}\right)=\frac{70}{24} . \\
\Rightarrow \sigma & =\sqrt{70 / 24} \approx 1.708 .
\end{aligned}
$$

$\mathbf{8 C} / \mathbf{1 b} \quad f(x)=\frac{1}{x_{2}-x_{1}}$.
$m=E(X)=\int_{x_{1}}^{x_{2}} x \cdot \frac{1}{x_{2}-x_{1}} d x=\frac{x_{2}^{2}-x_{1}^{2}}{2\left(x_{2}-x_{1}\right)}=\frac{x_{2}+x_{1}}{2}$.
$\sigma^{2}=\int_{x_{1}}^{x_{2}} x^{2} f(x) d x-m^{2}=\int_{x_{1}}^{x_{2}} x^{2} \cdot \frac{1}{x_{2}-x_{1}} d x-\left(\frac{x_{2}+x_{1}}{2}\right)^{2}=$ (algebra) $=\frac{\left(x_{2}-x_{1}\right)^{2}}{12}$.
$\Rightarrow \quad \sigma=\frac{x_{2}-x_{1}}{2 \sqrt{3}}$.
(continued)

8D/1b. From the table: $P(Z \leq-1)=1-P(Z \leq 1)=1-.8413=.1587=15.9 \%$.
8D/1d. From the table:
$P(Z<-1)=1-P(Z<1)=1-.8413=.1587, \quad P(Z<2.5)=.9938$.
$\Rightarrow P(-1<Z<2.5)=.9938-.1587=.8351=84 \%$
8D/2. Transform to a standard normal distribution:

$$
\begin{aligned}
P(85<X<135) & =P((85-m) / \sigma \\
& <(X-m) / \sigma<(135-m) / \sigma) \\
& =P(-35 / 36<Z<15 / 36) \\
& =P(-.97<Z<.42) \\
& \approx P(-1<Z<.4) \\
& =.6554-(1-.8413) \approx .5
\end{aligned}
$$

answer: About $1 / 2$ the 160 batteries will last between 85 and 135 hours.
8D/3. Let X be the normal random variable for the grades.
$\Rightarrow P($ fail $)=P(X<55)=P(Z<(55-m) / \sigma)$
$=P(Z<-15 / 10)=1-P(Z<1.5)=1-.9332=.0668$.
\Rightarrow number of failures $=300^{*} .0668=20$.
Let T be the passing threshold for the mean professor. $\Rightarrow .10=P(X<T)=P(Z<$ $(T-m) / \sigma)$.
From the table: $\quad P(Z<1.3)=.9 \Rightarrow P(Z<-1.3)=.1$.
$\Rightarrow(T-m) / \sigma=-1.3 \Rightarrow T=-1.3 \cdot 10+70=57$.

