18.02A Problem Set 6

(due Thurs., Nov. 15)
This is due after exam 4, but the material for classes 21-23 is on the exam.
Part I (20 points)
$\mathrm{TB}=$ Simmons; $\mathrm{SN}=18.02 \mathrm{~A}$ Supplementary Notes (all have solutions)
The problems marked 'other' are not to be handed in.

Class 21 (Tues., Oct. 31) Parametric equations.
Read: TB: 17.1, 17.2 to middle of page 598, 18.4
Hand in: 1E/3bc, 4; 1I/2b, 3ad, 5
(For $1 \mathrm{E} / 4$ simply accept that $x+2 y-z=2$ is the equation of a plane)
Others: $1 \mathrm{E} / 1,3 \mathrm{a}, 6 ; 1 \mathrm{I} / 1,3 \mathrm{bc}$
Continuation: (Wed., Nov. 1) Discussion, review and catch up.
Class 22 (Thurs., Nov. 2 pset 5 due) Vector derivatives: velocity, curvature (2 hours).
Read: TB: 17.4
Hand in: $1 \mathrm{~J} / 1 \mathrm{ac}, 3,4 \mathrm{ab}, 5,6,9 \mathrm{abc}$, find the curvature of the helix in $1 \mathrm{~J} / 6$.
Others: $1 \mathrm{~J} / 2,7$
Continuation: (Mon., Nov. 6) Continuation.
Class 23 (Tues., Nov. 7) Continuation, Kepler's second law.
Read: SN: K
Hand in: None
Others: None
Continuation: (Wed., Nov. 8) Discussion, review and catch up.
Exam: (Thurs., Nov. 9) Exam 4 (covers 17-23)

Class 24 (Mon., Nov. 13) Functions of several variables, partial derivatives.
Read: TB: 19.1
Hand in: 2A/1abe
Others: 2A/1cd
Class 25 (Tues., Nov. 14) Tangent plane, level curves, contour surfaces.
Read: TB: 19.2 SN: TA
Hand in: 2A/2ae, 3b; 2B/1b, 4, 6
Others: 2A/1acd, 2bc, 2B/3, 7

Part II (29 points)

Problem 1 (Class 21, 5 pts: 1,1,2,1)
a) Find the position vector of the trajectory of circular motion in the plane around the origin starting at $(-1,0)$ going clockwise at unit speed.
b) Find the position vector of the trajectory of circular motion in the plane around the origin starting at $(10,0)$ going counterclockwise at speed 60 .
c) Repeat part (b) if the speed is now 60 rpm (with t measured in minutes).
d) Find the position and velocity vectors of the trajectory with initial position (at time $t=0) \mathbf{r}_{\mathbf{0}}=\mathbf{j}, \quad$ initial velocity $\mathbf{v}_{\mathbf{0}}=-\mathbf{i}, \quad$ and acceleration $\mathbf{a}(t)=\cos t \mathbf{i}-\sin t \mathbf{j}+\mathbf{k}$.

Problem 2 (Class 21, 8 pts: $2,3,2,1+2$ E.C.)
a) A jet takes off from $(1,1,0)$ at time $t=0$ and moves with constant velocity $\mathbf{v}=\langle-5,0,1\rangle$. In a flight simulator, the trajectory is displayed in the $y z$-plane as it would appear to an observer at the point $(1,0,0)$. Find the formula (in the form $y=y(t), z=z(t)$) for the trajectory on the screen. (Worked example (1) may help with this.)
b) Repeat part (a) if the jet takes off from (a, b, c) and has constant velocity $\langle\alpha, \beta, \gamma\rangle$.
c) Your answers in parts (a) and (b) should be along a straight line (this may not be obvious in part (b)). What happens as $t \rightarrow \infty$?
d) Draw several trajectories as they would appear on the screen.

Extra credit) Give a geometric explanation for your answer in parts (c) and (d)
Problem 3 (Class 21, 4 pts: 2,2)
a) Let $P=(1,1,1)$. Find the distance from P to the plane $x+y=7$.
b) Let P be as in part (a). Find the distance from the point P to the line $t(1,2,2)$.

Problem 4 (Class 22: 5 pts: $3,1,1$)
a) Find the radius of curvature, center of curvature and the unit tangent and normal vectors to the parabola $(x, y)=\left(a t^{2}, 2 a t\right)$, where a is a constant.
b) Find the radius of curvature of $y=2 x+3$ for general x.
c) Find the point of maximum curvature on the parabola $y=x^{2}$.

Problem 5 (Class 20: 3 pts)
Find the center of the unique circle through the three points $(1,0,0),(0,2,0)$ and $(0,0,1)$.
Problem 6 (Classes 22, 4 pts: 2,2)
a) Define the cycloid and derive parametric equations for it.
b) Compute the arclength of one arch of the cycloid.

