### 18.02A Problem Set 6 Solutions

## Part II (29 points)

Problem 1 (Class 21, 5 pts: 1,1,2,1)
a) The paremeter $t$ is in units of time.

Usual unit circle is $(x, y)=(\cos t, \sin t)$ (counterclockwise at unit speed, starting at $(1,0))$.
Reverse direction: $\quad(x, y)=(\cos (-t), \sin (-t))=(\cos t,-\sin t)$.
Shift start to $(-1,0): \quad(x, y)=(\cos (t+\pi),-\sin (t+\pi))=(-\cos t, \sin t)$.
$\Rightarrow$ position vector $=\mathbf{r}(t)=x \mathbf{i}+y \mathbf{j}=-\cos t \mathbf{i}+\sin t \mathbf{j}$.
b) Circular CCW at constant speed $\Rightarrow(x, y)=10(\cos \omega t, \sin \omega t)$.

Speed $=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}=10 \omega=60 \Rightarrow \omega=6 . \Rightarrow \mathbf{r}(t)=10 \cos (6 t) \mathbf{i}+10 \cos (6 t) \mathbf{j}$.
c) RPM is revolutions (or cycles) per minute.
$60 \mathrm{rpm} \Leftrightarrow 120 \pi$ radians $/$ minute $\Rightarrow \mathbf{r}(t)=10 \cos (120 \pi t) \mathbf{i}+10 \sin (120 \pi t) \mathbf{j})$.
d) Because they are so easy, we don't show all the algebra for the integrals. The important thing is to remember the constant of integration.

$$
\begin{aligned}
& \mathbf{v}(t)=\int \mathbf{a}(t) d t=\sin t \mathbf{i}+\cos t \mathbf{j}+t \mathbf{k}+\mathbf{c}_{\mathbf{1}} ; \quad \mathbf{v}_{\mathbf{0}}=-\mathbf{i} \Rightarrow \mathbf{c}_{\mathbf{1}}=\langle-1,-1,0\rangle . \\
& \Rightarrow \mathbf{v}=(-1+\sin t) \mathbf{i}+(-1+\cos t) \mathbf{j}+t \mathbf{k} . \\
& \mathbf{r}(t)=\int \mathbf{v}(t) d t=(-t-\cos t) \mathbf{i}+(-t+\sin t) \mathbf{j}+\frac{t^{2}}{2} \mathbf{k}+\mathbf{c}_{\mathbf{2}} ; \quad \mathbf{r}_{\mathbf{0}}=\mathbf{j} \Rightarrow \mathbf{c}_{\mathbf{2}}=\langle 1,1,0\rangle . \\
& \Rightarrow \mathbf{r}(t)=(1-t-\cos t) \mathbf{i}+(1-t+\sin t) \mathbf{j}+\frac{t^{2}}{2} \mathbf{k} .
\end{aligned}
$$

Problem 2 (Class 21, 8 pts: 2,3,2,1 +2 E.C.)
a) Let $P$ be the point giving the jet's position. So the position vector is

$$
\overrightarrow{\mathbf{O P}}=\mathbf{r}(t)=\langle 1,1,0\rangle+t\langle-5,0,1\rangle=(1-5 t) \mathbf{i}+\mathbf{j}+t \mathbf{k} .
$$

We want to know where on the $y z$-plane the eye at point $E$ will see the plane. Call the point on the $y z$-plane $Q$.
$\Rightarrow Q=$ intersection of the line $\overrightarrow{\mathbf{E P}}$ with the $y z$-plane.
Line $\overrightarrow{\mathbf{E P}}$ is parameterized by (need to use $u$ because $t$ is already taken)

$$
(x, y, z)=E+u(P-E)=(1,0,0)+u(-5 t, 1, t) .
$$

$Q=$ point on $\overrightarrow{\mathbf{E P}}$ with $x=0 \Rightarrow 1-5 u t=0 \Rightarrow u=1 / 5 t$.


$$
\Rightarrow \quad Q=(0,1 / 5 t, 1 / 5) \quad \text { or } \quad y=1 / 5 t, z=1 / 5
$$

(continued)
b) We simply repeat the answer to part (a) using letters instead of numbers.

Position of jet: $\overrightarrow{\mathbf{O P}}=\mathbf{r}(t)=\langle a+\alpha t, b+\beta t, c+\gamma t\rangle$.
To the eye at $E=(1,0,0)$ the jet at point $P$ will appear on
the screen at the point $Q$ where $\overrightarrow{\mathbf{E P}}$ intersects the $y z$-plane.
$\overrightarrow{\mathbf{E P}}$ is parametrized by $(x, y, z)=E+u(P-E)=(1,0,0)+u(a-1+\alpha t, b+\beta t, c+\gamma t)$.
The point $Q$ is the point on $\overrightarrow{\mathbf{E P}}$ with $x=0 \Rightarrow 1+u(a-1+\alpha t)=0 \Rightarrow u=\frac{1}{1-a-\alpha t}$
$\Rightarrow \quad y=\frac{b+\beta t}{1-a-\alpha t}, \quad z=\frac{c+\gamma t}{1-a-\alpha t}$.
c)

You weren't asked to do this, but we show the trajectory in part (b) is a straight line. For this, we compute velocity. After the quotient rule and some algebra we have

$$
\begin{aligned}
\left(y^{\prime}, z^{\prime}\right) & =\left(\frac{\beta(1-a)+b \alpha}{(1-a-\alpha t)^{2}}, \frac{\gamma(1-a)+c \alpha}{(1-a-\alpha t)^{2}}\right) \\
& =\frac{1}{(1-a-\alpha t)^{2}}(\beta(1-a)+b \alpha, \gamma(1-a)+c \alpha)
\end{aligned}
$$

$\Rightarrow$ the velocity always points in same direction (along $(\beta(1-a)+b \alpha, \gamma(1-a)+c \alpha)) \quad \Rightarrow \quad$ the trajectory on screen is along a line.
(2) From the formula for $(y, z)$ in part (b) we have


Figure 1 $\lim _{t \rightarrow \infty}(y, z)=(-\beta / \alpha,-\gamma / \alpha)$.
d) See figure 2

Extra credit) The (two dimensional) figure 1 shows that as $t \rightarrow \infty$ the line $\overrightarrow{\mathbf{E P}}$ becomes parallel to $\mathbf{v}$, i.e. it heads towards the line $E+u \mathbf{v}$. $\Rightarrow$ the image on the screen heads towards the point $Q_{0}$ where the line $E+u \mathbf{v}$ intersects the $y z$-plane.
This line is $(x, y, z)=(1,0,0)+u(\alpha, \beta, \gamma) \Rightarrow$ it intersects the $y z$-plane


Figure 2 when $u=-1 / \alpha \Rightarrow y=-\beta / \alpha, \quad z=-\gamma / \alpha \quad$ (as in part (c)).

Problem 3 (Class 21, 4 pts: 2,2)
a)

$Q=$ any point on the plane, we take $Q=(7,0,0)$.
$\mathbf{N}=$ normal to plane $=\langle 1,1,0\rangle=\mathbf{i}+\mathbf{j}$.
$R=$ point on plane closest to $P$
Distance $=|P R|=|P Q| \cos \theta=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|$
$\overrightarrow{\mathbf{P Q}}=\langle 6,-1,-1\rangle, \quad|\mathbf{N}|=\sqrt{2} \Rightarrow \overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}=\frac{5}{\sqrt{2}}$.
(continued)
b) We do this using the cross product method. Projection works just as well.


Problem 4 (Class 22: 5 pts: $3,1,1$ )
a)
$\mathbf{r}(t)=a t^{2} \mathbf{i}+2 a t \mathbf{j}$
$\mathbf{v}(t)=\mathbf{r}^{\prime}=2 a t \mathbf{i}+2 a \mathbf{j}$
$\mathbf{a}(t)=\mathbf{r}^{\prime \prime}=2 a \mathbf{i}$

$$
\text { Unit tangent }=\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{t}{\sqrt{1+t^{2}}} \mathbf{i}+\frac{1}{\sqrt{1+t^{2}}} \mathbf{j}
$$



We use the formulas:

1) $\kappa=\frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^{3}}$.
2) $\mathbf{v} \times(\mathbf{a} \times \mathbf{v})=\kappa|v|^{4} \mathbf{N}$. ( $\Rightarrow \mathbf{N}$ is the unit vector parallel to $\mathbf{v} \times(\mathbf{a} \times \mathbf{v})$.)

Computing: $\quad|v|=2 a \sqrt{1+t^{2}}, \quad \mathbf{a} \times \mathbf{v}=4 a^{2} \mathbf{k}, \quad \mathbf{v} \times(\mathbf{a} \times \mathbf{v})=8 a^{3} \mathbf{i}-8 a^{3} t \mathbf{j}$.
$\mathbf{N}=$ unit vector in direction of $\mathbf{v} \times(\mathbf{a} \times \mathbf{v})=$
$\Rightarrow \quad \mathbf{N}=\frac{1}{\sqrt{1+t^{2}}} \mathbf{i}-\frac{t}{\sqrt{1+t^{2}}} \mathbf{j}$. (It's easy to check $\mathbf{N} \perp \mathbf{T}$.)
Center of curvature $C: \quad \overrightarrow{\mathbf{O C}}=\mathbf{r}+R \mathbf{N}=\left\langle a t^{2}, 2 a t\right\rangle+2 a\left(1+t^{2}\right)\langle 1,-t\rangle \Rightarrow C=\left(2 a+3 a t^{3},-2 a t^{3}\right)$.
b) Since $y$ is a function of $x$ the following parametrization: $\quad x=t, y=2 t+3$.
$\mathbf{v}=\mathbf{i}+2 \mathbf{j}, \quad \mathbf{a}=\mathbf{0} \Rightarrow \kappa=0 \Rightarrow$ Rad. of curvature $=\infty$.
(All this should have been expected since the curve is a line.)
c) Parametrization: $x=t, \quad y=t^{2} \Leftrightarrow \mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}$.
$\Rightarrow \mathbf{v}=\mathbf{i}+2 t \mathbf{j}, \quad \mathbf{a}=2 \mathbf{j}$.
$\Rightarrow \mathbf{a} \times \mathbf{v}=-2 \mathbf{k} \Rightarrow \kappa=\frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^{3}}=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}$.
By inspection $\kappa$ is maximized when $t=0$, i.e. the vertex $(0,0)$ is the point of maximum curvature.

Problem 5 (Class 20: 3 pts)
To have names, let $A=(1,0,0), B=(0,2,0)$ and $C=(0,0,1)$.
The center is at the intersection of three planes:

1. the plane that perpendicularly bisects $A B$
2. the plane that perpendicularly bisects $A C$

3 . the plane containing the 3 points $A, B$, and $C$.
To get the equation for each plane we need a normal $\mathbf{N}$ and a point $P$ :

1. $\mathbf{N}=\overrightarrow{\mathbf{A B}}=\langle-1,2,0\rangle, \quad P=\frac{A+B}{2}=(1 / 2,1,0): \Rightarrow-x+2 y=3 / 2$.
2. $\mathbf{N}=\overrightarrow{\mathbf{A C}}=\langle-1,0,1\rangle, \quad P=\frac{A+C}{2}=(1 / 2,0,1 / 2): \Rightarrow-x+z=0$.
3. $\mathbf{N}=\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}=\langle 2,1,2\rangle, \quad P=(1,0,0): \Rightarrow 2 x+y+2 z=2$.

Intersection of 3 planes $\Leftrightarrow$ solve 3 equations in 3 unknowns:

$$
-x+2 y=3 / 2 ; \quad-x+z=0 ; \quad 2 x+y+2 z=2 .
$$

These can be solved my matrix methods or elimination (in this case I think elimination is easier) to get: $\underline{\text { answer: } \text { Center }=(5 / 18,8 / 9,5 / 18) .}$

Problem 6 (Classes 22, 4 pts: 2,2)
a) Definition: the cycloid is the trajectory of a point $P$ on a wheel of radius $a$ as it rolls along the $x$-axis.


We parametrize using $\theta=$ the angle through which the wheel has turned.
Assume the point $P$ starts at the origin):

$$
\begin{aligned}
& \overrightarrow{\mathbf{O P}}=\mathbf{r}(\theta)=\overrightarrow{\mathbf{O Q}}+\overrightarrow{\mathbf{Q C}}+\overrightarrow{\mathbf{C P}} . \\
& \overrightarrow{\mathbf{O Q}}=a \theta \mathbf{i}, \quad(a \theta=\text { distance rolled }) . \\
& \overrightarrow{\mathbf{Q C}}=a \mathbf{j} \\
& \overrightarrow{\mathbf{C P}}=-a \sin \theta \mathbf{i}-a \cos \theta \mathbf{j} . \\
& \Rightarrow \mathbf{r}(\theta)=a(\theta-\sin \theta) \mathbf{i}+a(1-\cos \theta) \mathbf{j} . \Rightarrow x=a(\theta-\sin \theta), \quad y=a(1-\cos \theta) .
\end{aligned}
$$

NOTE: the symmetric form of equations is hard to write down
b) Differential of arclength

$$
\begin{aligned}
d s & =\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d \theta=\sqrt{(a-a \cos \theta)^{2}+(a \sin \theta)^{2}} d \theta \\
& =a \sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} d \theta \\
& =a \sqrt{2(1-\cos \theta)} d \theta=2 a \sqrt{\frac{1-\cos \theta}{2}} d \theta=2 a\left|\sin \frac{\theta}{2}\right| d \theta
\end{aligned}
$$

Arclength of arch $=\int_{0}^{2 \pi} 2 a\left|\sin \frac{\theta}{2}\right| d \theta$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} 2 a \sin \frac{\theta}{2} d \theta \quad(\text { since } \sin \theta / 2 \geq 0 \text { for } 0<\theta<2 \pi) \\
& =-\left.4 a \cos \frac{\theta}{2}\right|_{0} ^{2 \pi}=8 a .
\end{aligned}
$$

