18.02A Problem Set 6 Worked Examples

Problem 1 (Class 21, 2 pts)
Let F be semi-transparent plane containing the points $x=1, y=2$ and $z=3$ on the three axes respectively. If you put your eye at the point $(2,0,0)$ at what point on F will you see think you see a point of light at $(0,1,1)$?
answer:

Let $P=(2,0,0)$ and $Q=(0,1,1)$.
We want the intersection of the line $P Q$ and the plane F.
Line: $(2,0,0)+t(-2,1,1)=(2-2 t, t, t)$.
Plane: $x+\frac{y}{2}+\frac{z}{3}=1$.
Intersection: $(2-2 t)+\frac{t}{2}+\frac{t}{3}=1 \Rightarrow t=\frac{6}{7}$.
\Rightarrow pt. of intersection $=(2 / 7,6 / 7,6 / 7)$.

Problem 2 (Class 21: 3 pts)
The hypocycloid is discussed on page 594-595 of the text. This is the curve formed by following a point on a circle as it rolls around the inside of another circle. Similarly, an epicycloid is traced out by a point on a circle rolling around the outside of another circle.
Assume:
-the fixed circle has radius a and is centered at the origin.
-the rolling circle has radius b.
-the point tracing out the curve is called P
-the rolling circle starts with its center on the positive x-axis with the point P at $(a, 0)$.
Using the hypocycloid as an example give parametric equations for the epicycloid.
answer:
Equating arclength along each circle we get: $a \theta=b \phi$.
$\overrightarrow{\mathbf{O C}}=(a+b)(\cos \theta \widehat{\mathbf{i}}+\sin \theta \widehat{\mathbf{j}})$.
$\overrightarrow{\mathbf{C P}}=b(\cos (\pi-(\theta+\phi)) \widehat{\mathbf{i}}-\sin (\pi-(\theta+\phi)) \widehat{\mathbf{j}})$
$=b(-\cos (\theta+\phi) \widehat{\mathbf{i}}-\sin (\theta+\phi) \widehat{\mathbf{j}})$.
$\mathbf{r}(\theta)=\overrightarrow{\mathbf{O P}}=\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{C P}}$
$=[(a+b) \cos \theta-b \cos (\theta+\phi)] \widehat{\mathbf{i}}+[(a+b) \sin \theta-b \sin (\theta+\phi)] \widehat{\mathbf{j}}$
$=[(a+b) \cos \theta-b \cos ((1+a / b) \theta)] \hat{\mathbf{i}}+[(a+b) \sin \theta-b \sin ((1+a / b) \theta)] \hat{\mathbf{j}}$
$\Rightarrow x(\theta)=(a+b) \cos \theta-b \cos ((1+a / b) \theta), y(\theta)=(a+b) \sin \theta-b \sin ((1+a / b) \theta)$

These plots were made with Matlab using $a=1$ and various values of b.

