18.02a Problem Set 7 Solutions

Part II (33 points)

Problem 1 (Class 26, 4 pts)

Let w = xyz, our surface = level surface: w = d.

Normal to surface = $\nabla w = (yz, xz, xy)$.

Evaluate at $P_o \Rightarrow \text{normal} = (y_o z_o, x_o z_o, x_o y_o)$.

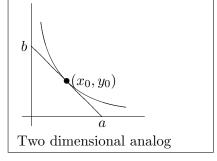
Tangent plane (point-normal form):

$$y_o z_o(x - x_o) + x_o z_o(y - y_o) + x_o y_o(z - z_o) = 0.$$

Rewriting tangent plane: $y_o z_o \cdot x + x_o z_o \cdot y + x_o y_o \cdot z = 3x_o y_o z_o = 3d$.

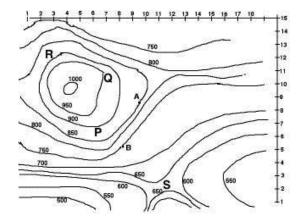
$$x,y,z$$
 intercepts: $a=\frac{3d}{y_oz_o}, \ b=\frac{3d}{x_oz_o}, \ c=\frac{3d}{x_oy_o}.$

$$\Rightarrow$$
 volume $=\frac{1}{6}abc = \frac{27d^3}{6x_o^2y_o^2z_o^2} = \frac{27d^3}{6d^2} = \frac{9d}{2}$ (constant independent of P_o).



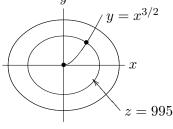
Problem 2 (Class 26, 5 pts:1,1,1,1,1)

- a) $h_x \approx \frac{-50}{.5} = -100$ (measuring from curve h = 850 to h = 800) or $h_x \approx \frac{-100}{2} = -50$ (from h = 900 to h = 800.) $h_y \approx \frac{-50}{-.5} = 100$ (from h = 850 to h = 800).
- b) $\frac{dh}{ds} \approx \frac{50}{1} = 50 \text{ (from } h = 750 \text{ to } h = 800)$
- c) P = (5.75, 6.75) (horizontal tangent).
- Q = (6.75, 11) (vertical tangent)
- d) R = (3, 12) (tangent at 45°)
- e) S = (11, 2) (mountain pass or saddle)



Problem 3 (Class 26, 5 pts:2,2,1)

- (a) The direction in the xy-plane of maximum increase of z is in the direction of $\nabla z = \langle -4x, -6y \rangle \Rightarrow \nabla z|_{(1,1)} = \langle -4, -6 \rangle$.
- \Rightarrow (in the *xy*-plane, the fastest increase is in direction of $\langle -4, -6 \rangle$.
- (b) If the projection of her path in the xy-plane has tangent vector $a \mathbf{i} + b \mathbf{j}$ then the tangent vector of her path on the mountain is $a \mathbf{i} + b \mathbf{j} + (\nabla z \cdot \langle a, b \rangle) \mathbf{k}$.
- \Rightarrow along the mountain the fastest increase is in direction of $-4\mathbf{i} 6\mathbf{j} + 52\mathbf{k}$.



Level curves

c) We need to show that the tangent at each point along the graph of $y = x^{3/2}$ is parallel to ∇z .

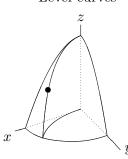
Point on graph: $P = (x, x^{3/2})$.

Tangent vector to
$$y = x^{3/2}$$
 at P is $\mathbf{v} = \langle 1, \frac{3}{2}x^{1/2} \rangle$.

$$\nabla z|_P = \langle -4x, -6x^{3/2} \rangle = -4x \, \mathbf{v}$$
. So they are parallel . QED

(The 3d picture at right shows the path along the mountain.)

(continued)



Problem 4 (Class 29, 5 pts:1,2,2)

a) Line 1:
$$(1,0,1) + t(0,1,-1) \Rightarrow x = 1, y = t, z = 1-t$$
.

Line 2:
$$(0,1,0) + u(1,0,1) \Rightarrow x = u, y = 1, z = u.$$

b)
$$A = (1, t, 1 - t), B = (u, 1, u)$$

$$\Rightarrow w(t,u) = |AB|^2 = (u-1)^2 + (1-t)^2 + (u+t-1)^2.$$

$$\Rightarrow \frac{\partial w}{\partial t} = -2(1-t) + 2(u+t-1) = 4t + 2u - 4,$$

$$\frac{\partial w}{\partial u} = 2(u-1) + 2(u+t-1) = 4u + 2t - 4.$$

Critical point when
$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial u} = 0 \implies \begin{cases} 4t + 2u - 4 &= 0 \\ 2t + 4u - 4 &= 0. \end{cases}$$

Solving by any method you like $\Rightarrow u = 2/3, t = 2/3$

$$\Rightarrow$$
 $A_0 = (1, \frac{2}{3}, \frac{1}{3}), \quad B_0 = (\frac{2}{3}, 1, \frac{2}{3}), \quad |A_0 B_0| = \frac{1}{\sqrt{3}}.$

c)
$$A = \frac{\partial^2 w}{\partial^2 t} = 4$$
, $C = \frac{\partial^2 w}{\partial^2 u} = 4$, $B = \frac{\partial^2 w}{\partial t \partial u} = 2$.
Second derivative test: $AC - B^2 = 12 > 0$ and $A > 0 \Rightarrow$ minimum.

$$\begin{array}{ll} \textbf{Problem 5} \ (\text{Class 28, 7 pts:2,2,2,1}) \\ \text{a)} \ \ A = \left(\begin{array}{cc} \mathbf{x} \cdot \mathbf{x} & \mathbf{x} \cdot \mathbf{i} \\ \mathbf{x} \cdot \mathbf{i} & \mathbf{i} \cdot \mathbf{i} \end{array} \right), \quad \mathbf{d} = \left(\begin{array}{cc} \mathbf{x} \cdot \mathbf{y} \\ \mathbf{i} \cdot \mathbf{y} \end{array} \right). \end{array}$$

b) See below.

c) Using matlab:

$$\begin{pmatrix} 14266 & 424 \\ 424 & 16 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 12401 \\ 369 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} .86551 \\ .12644 \end{pmatrix}$$

%Matlab code

 $x = [3 \ 8 \ 11 \ 14 \ 15 \ 18 \ 21 \ 25 \ 28 \ 31 \ 35 \ 39 \ 41 \ 42 \ 46 \ 47];$

y = [5 6 8 10 13 15 20 22 25 29 32 33 34 37 39 41];

i = ones(1, length(x));

$$A = [x^*x', x^*i'; x^*i', i^*i']$$

$$d = [x*y', i*y']'$$

$$u = inv(A)*d;$$

$$a = u(1)$$

$$b = u(2)$$

clf %clear figure

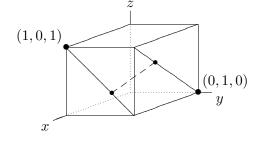
plot(x,y,'*k') %scatter plot

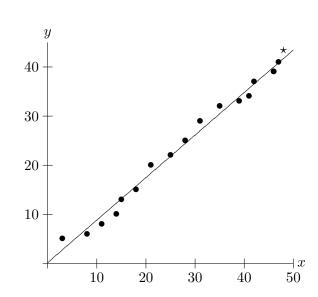
hold on

$$t = [0.50];$$

$$plot(t, a*t + b, 'k')$$
 %line

d) $t = 50 \Rightarrow \text{ predicted cost} = a * 50 + b = 43.4.$ answer: \$.43.





(continued)

Problem 6 (Class 29, 3 pts)

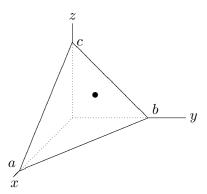
Equation of plane: $\frac{x}{a} + \frac{y}{b} + \frac{z}{b} = 1$

Constraint: $g(a,b,c) = \frac{4}{a} + \frac{1}{b} + \frac{1}{c} = 1 \implies \nabla g = \langle -\frac{4}{a^2}, -\frac{2}{b^2}, -\frac{1}{c^2} \rangle$. Volume: $V = f(a,b,c) = \frac{1}{6}abc \implies \nabla f = \frac{1}{6}\langle bc, ac, ab \rangle$.

Lagrange multipliers: $\frac{1}{6}\langle bc, ac, ab \rangle = -\lambda \langle \frac{4}{a^2}, \frac{2}{b^2}, \frac{1}{c^2} \rangle$ and $\frac{4}{a} + \frac{2}{b} + \frac{1}{c} = 1$.

Solve symmetrically: $-\frac{abc}{6\lambda} = \frac{4}{a} = \frac{2}{b} = \frac{1}{c}$.

Solve symmetrically: $-\frac{3}{6\lambda} = \frac{1}{a} = \frac{1}{b} = \frac{1}{c}$. Substitute in constraint: $\frac{3}{c} = 1 \Rightarrow a = 12, b = 6, c = 3$.



Problem 7 (Class 26, 4 pts:1,1,2)

a) Let
$$P = (2,5)$$
 and area $= A = xy$.

We have $\frac{\partial A}{\partial x} = y$ and $\frac{\partial A}{\partial y} = x \implies \left(\frac{\partial A}{\partial x}\right)_P = 5$ and $\left(\frac{\partial A}{\partial y}\right)_P = 2$.

$$\Rightarrow \Delta A \approx 5 \Delta x + 2 \Delta y.$$

b)
$$A(2,5) = 10$$
. $\Delta A \approx 5 \cdot .1 + 2 \cdot .2 = .9 \Rightarrow A \approx 10.9$.

- c) The rectangle marked A_0 is the original area 10.
- A_1 is the area corresponding to $2\Delta x$ in the approximation formula.
- A_2 is the area corresponding to $5 \Delta y$ in the approximation formula.
- $A_3 = \Delta x \cdot \Delta y$ is the error in the approximation.

Since A_3 is a product of the small values the error is tiny.

