18.01A Topic 1: Linear and quadratic approximations. Read: SN: A.

Vocabulary: Linear approximation = linearization Quadratic approximation Geometric series Binomial theorem

Basic idea: If h is small then h^2 is really small and h^3 is really, really small.

Example: Suppose $f(x) = 3 + 4x + 5x^2 + 7x^3$. Then for x small, $f(x) \approx 3 + 4x$ (linear approximation). I.e. we can ignore the higher powers of x.

More accurate approximation: $f(x) \approx 3 + 4x + 5x^2$ (quadratic approx.) Notice that

1. f(0) = 0.

2. $f'(x) = 4 + 2 \cdot 5x + 3 \cdot 7x^2 \Rightarrow f'(0) = 4.$ 4. $f''(x) = 2 \cdot 5 + 3 \cdot 2 \cdot 7x \Rightarrow f''(0) = 2 \cdot 5.$

 \Rightarrow linear approximation is: $f(x) \approx f(0) + f'(0)x$ for $x \approx 0$.

and quadratic approximation is: $f(x) \approx f(0) + f'(0)x + \frac{1}{2}f''(0)x^2$ for $x \approx 0$.

To see why these are the *best* approximations we turn to calculus. While we're at it we'll work near an arbitrary base point x = a.

Basic idea:

For
$$y = f(x)$$
, $f'(x) \approx \frac{\Delta y}{\Delta x} \Rightarrow \Delta y \approx f'(x) \Delta x$.
 $\Leftrightarrow f(x) - f(a) \approx f'(x) (x - a)$.
(I.e the tangent line approximates the graph.)

Basic linear formulas:

 $\begin{array}{l} (\mathrm{A2}) \ f(x) \approx f(a) + f'(a)(x-a) \ \mathrm{for} \ x \approx a. \\ (\mathrm{A4}) \ 1/(1-x) \approx 1+x \ \mathrm{for} \ x \approx 0. \\ (\mathrm{A5}) \ (1+x)^r \approx 1+rx \ \mathrm{for} \ x \approx 0. \\ (\mathrm{A6}) \ \mathrm{sin} \ x \approx x \ \mathrm{for} \ x \approx 0. \end{array}$

We can prove A4-6 using A2.

Examples:

1. Approximate $f(x) = (1+x)^{99}(1+3x)^{77}$ for $x \approx 0$. <u>answer:</u> $f(x) \approx (1+99x)(1+77 \cdot 3x) = 1+330x+99 \cdot 231x^2 \approx 1+330x$. 2. Approximate $f(x) = 1/(1-\sin x)^2$ for $x \approx 0$. <u>answer:</u> Since $\sin x \approx 0$ when $x \approx 0$ (A4) gives $f(x) \approx (1+\sin x)^2 \approx (1+x)^2 = 1+2x+x^2 \approx 1+2x$.

(continued)

Basic quadratic formulas:

(A13)
$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$$
 for $x \approx a$.
(A9) $\frac{1}{1-x} \approx 1+x+x^2$ for $x \approx 0$.
(A10) $(1+x)^r \approx 1+rx + \frac{r(r-1)}{2}x^2$ for $x \approx 0$.
(A11) $\sin x \approx x$ for $x \approx 0$.
(A12) $\cos x \approx 1 - \frac{x^2}{2}$ for $x \approx 0$.
We can prove A9-12 using A13.

Examples: (quadratic)

Q1.
$$\sqrt{a+bx} = \sqrt{a}\sqrt{1+\frac{b}{a}x} \approx \sqrt{a}(1+\frac{1}{2}\frac{b}{a}x-\frac{1}{8}(\frac{b}{a}x)^2)$$
 (for $x \approx 0$).
Q2. $\tan \theta = \frac{\sin \theta}{\cos \theta}$, (near 0) $\approx \frac{\theta}{1-\theta^2/2} \approx \theta(1+\theta^2/2) \approx \theta$.

Examples:

2A-1. Find the linearization of $\sqrt{a+bx}$ in two ways. First by using formula (A2) and second using the basic formulas and algebra.

<u>answer:</u> i) Give the function a name: $f(x) = \sqrt{a + bx}$. Find the pieces of (A2): $f(0) = \sqrt{a}; \quad f(x) = \sqrt{a + bx} \implies f'(x) = b/\sqrt{a + bx} \implies f'(0) = b/\sqrt{a}$. Use (A2): $f(x) \approx \sqrt{a} + \frac{b}{\sqrt{a}}x$, for $x \approx 0$.

ii) This is done in example Q1 above, simply ignore the quadratic term.

2A-2. Same as exercise 1 for
$$f(x) = \frac{1}{a+bx}$$
.
answer: i) Find the pieces of (A2):
 $f(0) = \frac{1}{a}; \quad f'(x) = -\frac{b}{(a+bx)^2} \Rightarrow f'(0) = -\frac{b}{a^2}.$
Use (A2): $f(x) \approx \frac{1}{a} - \frac{b}{a^2}x, \quad \text{for } x \approx 0.$
2A-8. Find the quadratic approximation for $f(x) = \frac{1}{1-x}$ for $x \approx 1/2.$

<u>answer</u>: Find the pieces for (A13) (here, $a = \frac{1}{2}$):

$$f(\frac{1}{2}) = 2; \quad f'(x) = \frac{1}{(1-x)^2} \Rightarrow f'(\frac{1}{2}) = 4; \quad f''(x) = \frac{2}{(1-x)^3} \Rightarrow f''(\frac{1}{2}) = 16.$$

Use (A13): $f(x) \approx 2 + 4(x - \frac{1}{2}) + 8(x - \frac{1}{2})^2.$

(continued)

Same problem, finding the answer using algebra:

Let
$$y = f(x)$$
.
Let $u = x - \frac{1}{2}$, (so $x \approx \frac{1}{2} \Leftrightarrow u \approx 0$).
 $\Rightarrow y = \frac{1}{1/2 - u} = \frac{2}{1 - 2u} \approx 2(1 + 2u + 4u^2) = 2 + 4(x - \frac{1}{2}) + 8(x - \frac{1}{2})^2$.
(The first approximation comes using (A0))

(The first approximation comes using (A9).)

Example from special relativity (example 3 in notes $\S A$) $m = m_0 c / \sqrt{c^2 - v^2}$, what v needed to produce 1% increase in mass? Want $m/m_0 = 1.01 = c/\sqrt{c^2 - v^2} = (1 - (v/c)^2)^{-1/2} \approx 1 + \frac{1}{2}(v/c)^2$. Let u = v/c, $1.01 = 1 + \frac{1}{2}u^2 \Rightarrow .02 = u^2 \Rightarrow u \approx \frac{1}{7} \Rightarrow v \approx 27000$ mi/sec.

Algebraic substitution rules:

1. Can substitute a linear (quadratic) approx for any factor or divisor as long as they have a constant term.

2. Once you make a linear substitution you can never recover the quadratic approximation.

Examples: (why we need to have a constant term)

1. $\frac{x(1+x)}{x(2+x)} \not\approx \frac{x}{2x}$.

2. $\frac{\ln(1+x)}{xe^x} \not\approx \frac{x}{x} = 1.$ Instead = $\frac{\ln(1+x)/x}{e^x} \approx \frac{1-x/2}{1+x} \approx (1-x/2)(1-x) \approx 1-3x/2.$ (Note: this would be hard to do by differentiation.)

Example: (why we can't get the quad. approx after a linear substitution) $f(x) = (1 + x + x^{2} + x^{3})(1 + 2x + 3x^{2})$ Quad. approx near 0: $f(x) \approx (1 + x + x^2)(1 + 2x + 3x^2) \approx 1 + 3x + 6x^2$ If first made linear approx: $f(x) \approx (1+x)(1+2x) = 1+3x+2x^2$ which is not THE quadratic approx. of f(x)

The exponential function $e^t \approx 1 + t + t^2/2$ for t near 0. **Proof**: Let $f(t) = e^t$ then $f(t) = f'(t) = f''(t) = e^t$. $\Rightarrow f(0) = f'(0) = f''(0) = 1.$ $\Rightarrow f(t) \approx 1 + t + t^2/2$ for $t \approx 0$.

Examples:

Suppose you have \$1000 in bank at 2% continuous interest. Approximately how much money is in the bank after 1 year? After 2 years?

answer: Balance = $f(t) = 1000e^{.02t} \approx 1000(1 + .02t + (.02t)^2/2)$. $f(1) \approx 1000(1 + .02 + .0002) = 1020.20.$ $f(2) \approx 1000(1 + .04 + .0008) = 1040.80.$