18.01A Topic 1: Linear and quadratic approximations.

Read: SN: A.
Vocabulary: \quad Linear approximation $=$ linearization
Quadratic approximation
Geometric series
Binomial theorem
Basic idea: If h is small then h^{2} is really small and h^{3} is really, really small.
Example: Suppose $f(x)=3+4 x+5 x^{2}+7 x^{3}$.
Then for x small, $f(x) \approx 3+4 x$ (linear approximation).
I.e. we can ignore the higher powers of x.

More accurate approximation: $\quad f(x) \approx 3+4 x+5 x^{2}$ (quadratic approx.)
Notice that

1. $f(0)=0$.
2. $f^{\prime}(x)=4+2 \cdot 5 x+3 \cdot 7 x^{2} \Rightarrow f^{\prime}(0)=4$.
3. $f^{\prime \prime}(x)=2 \cdot 5+3 \cdot 2 \cdot 7 x \Rightarrow f^{\prime \prime}(0)=2 \cdot 5$.
\Rightarrow linear approximation is: $f(x) \approx f(0)+f^{\prime}(0) x$ for $x \approx 0$.
and quadratic approximation is: $\quad f(x) \approx f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}$ for $x \approx 0$.
To see why these are the best approximations we turn to calculus.
While we're at it we'll work near an arbitrary base point $x=a$.

Basic idea:

For $y=f(x), f^{\prime}(x) \approx \frac{\Delta y}{\Delta x} \Rightarrow \Delta y \approx f^{\prime}(x) \Delta x$. $\Leftrightarrow f(x)-f(a) \approx f^{\prime}(x)(x-a)$.
(I.e the tangent line approximates the graph.)

Basic linear formulas:
(A2) $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ for $x \approx a$.
(A4) $1 /(1-x) \approx 1+x$ for $x \approx 0$.
(A5) $(1+x)^{r} \approx 1+r x$ for $x \approx 0$.

(A6) $\sin x \approx x$ for $x \approx 0$.
We can prove A4-6 using A2.

Examples:

1. Approximate $f(x)=(1+x)^{99}(1+3 x)^{77}$ for $x \approx 0$.
answer: $f(x) \approx(1+99 x)(1+77 \cdot 3 x)=1+330 x+99 \cdot 231 x^{2} \approx 1+330 x$.
2. Aproximate $f(x)=1 /(1-\sin x)^{2}$ for $x \approx 0$.
answer: Since $\sin x \approx 0$ when $x \approx 0$ (A4) gives
$f(x) \approx(1+\sin x)^{2} \approx(1+x)^{2}=1+2 x+x^{2} \approx 1+2 x$.
(continued)

Basic quadratic formulas:

(A13) $f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$ for $x \approx a$.
(A9) $\frac{1}{1-x} \approx 1+x+x^{2}$ for $x \approx 0$.
(A10) $(1+x)^{r} \approx 1+r x+\frac{r(r-1)}{2} x^{2}$ for $x \approx 0$.
(A11) $\sin x \approx x$ for $x \approx 0$.
(A12) $\cos x \approx 1-\frac{x^{2}}{2}$ for $x \approx 0$.
We can prove A9-12 using A13.
Examples: (quadratic)
Q1. $\sqrt{a+b x}=\sqrt{a} \sqrt{1+\frac{b}{a} x} \approx \sqrt{a}\left(1+\frac{1}{2} \frac{b}{a} x-\frac{1}{8}\left(\frac{b}{a} x\right)^{2}\right) \quad($ for $x \approx 0)$.
Q2. $\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad($ near 0$) \quad \approx \frac{\theta}{1-\theta^{2} / 2} \approx \theta\left(1+\theta^{2} / 2\right) \approx \theta$.

Examples:

2A-1. Find the linearization of $\sqrt{a+b x}$ in two ways. First by using formula (A2) and second using the basic formulas and algebra.
answer: i) Give the function a name: $f(x)=\sqrt{a+b x}$.
Find the pieces of (A2):
$f(0)=\sqrt{a} ; \quad f(x)=\sqrt{a+b x} \Rightarrow f^{\prime}(x)=b / \sqrt{a+b x} \Rightarrow f^{\prime}(0)=b / \sqrt{a}$.
Use (A2): $f(x) \approx \sqrt{a}+\frac{b}{\sqrt{a}} x$, for $x \approx 0$.
ii) This is done in example Q1 above, simply ignore the quadratic term.

2A-2. Same as exercise 1 for $f(x)=\frac{1}{a+b x}$.
answer: i) Find the pieces of (A2):
$f(0)=\frac{1}{a} ; \quad f^{\prime}(x)=-\frac{b}{(a+b x)^{2}} \Rightarrow f^{\prime}(0)=-\frac{b}{a^{2}}$.
Use (A2): $f(x) \approx \frac{1}{a}-\frac{b}{a^{2}} x$, for $x \approx 0$.
2A-8. Find the quadratic approximation for $f(x)=\frac{1}{1-x}$ for $x \approx 1 / 2$.
answer: Find the pieces for (A13) (here, $a=\frac{1}{2}$):
$f\left(\frac{1}{2}\right)=2 ; \quad f^{\prime}(x)=\frac{1}{(1-x)^{2}} \Rightarrow f^{\prime}\left(\frac{1}{2}\right)=4 ; \quad f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} \Rightarrow f^{\prime \prime}\left(\frac{1}{2}\right)=16$.
Use (A13): $f(x) \approx 2+4\left(x-\frac{1}{2}\right)+8\left(x-\frac{1}{2}\right)^{2}$.

Same problem, finding the answer using algebra:
Let $y=f(x)$.
Let $u=x-\frac{1}{2}, \quad\left(\right.$ so $\left.x \approx \frac{1}{2} \Leftrightarrow u \approx 0\right)$.
$\Rightarrow y=\frac{1}{1 / 2-u}=\frac{2}{1-2 u} \approx 2\left(1+2 u+4 u^{2}\right)=2+4\left(x-\frac{1}{2}\right)+8\left(x-\frac{1}{2}\right)^{2}$.
(The first approximation comes using (A9).)
Example from special relativity (example 3 in notes \S A)
$m=m_{0} c / \sqrt{c^{2}-v^{2}}$, what v needed to produce 1% increase in mass?
Want $m / m_{0}=1.01=c / \sqrt{c^{2}-v^{2}}=\left(1-(v / c)^{2}\right)^{-1 / 2} \approx 1+\frac{1}{2}(v / c)^{2}$.
Let $u=v / c, 1.01=1+\frac{1}{2} u^{2} \Rightarrow .02=u^{2} \Rightarrow u \approx \frac{1}{7} \Rightarrow v \approx 27000 \mathrm{mi} / \mathrm{sec}$.

Algebraic substitution rules:

1. Can substitute a linear (quadratic) approx for any factor or divisor as long as they have a constant term.
2. Once you make a linear substitution you can never recover the quadratic approximation.
Examples: (why we need to have a constant term)
3. $\frac{x(1+x)}{x(2+x)} \not \approx \frac{x}{2 x}$.
4. $\frac{\ln (1+x)}{x \mathrm{e}^{x}} \not \approx \frac{x}{x}=1$.

Instead $=\frac{\ln (1+x) / x}{\mathrm{e}^{x}} \approx \frac{1-x / 2}{1+x} \approx(1-x / 2)(1-x) \approx 1-3 x / 2$.
(Note: this would be hard to do by differentiation.)
Example: (why we can't get the quad. approx after a linear substitution)
$f(x)=\left(1+x+x^{2}+x^{3}\right)\left(1+2 x+3 x^{2}\right)$
Quad. approx near 0: $f(x) \approx\left(1+x+x^{2}\right)\left(1+2 x+3 x^{2}\right) \approx 1+3 x+6 x^{2}$
If first made linear approx: $f(x) \approx(1+x)(1+2 x)=1+3 x+2 x^{2}$ which is not THE quadratic approx. of $f(x)$
The exponential function $\mathrm{e}^{t} \approx 1+t+t^{2} / 2$ for t near 0 .
Proof: Let $f(t)=\mathrm{e}^{t}$ then $f(t)=f^{\prime}(t)=f^{\prime \prime}(t)=\mathrm{e}^{t}$.
$\Rightarrow f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=1$.
$\Rightarrow f(t) \approx 1+t+t^{2} / 2$ for $t \approx 0$.

Examples:

Suppose you have $\$ 1000$ in bank at 2% continuous interest. Approximately how much money is in the bank after 1 year? After 2 years?
answer: Balance $=f(t)=1000 \mathrm{e}^{.02 t} \approx 1000\left(1+.02 t+(.02 t)^{2} / 2\right)$.
$f(1) \approx 1000(1+.02+.0002)=1020.20$.
$f(2) \approx 1000(1+.04+.0008)=1040.80$.

