18.01A Topic 11: Improper integrals.

Read: TB: 12.4, SN: INT
Definition: $\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$.
If the limit exits we say the improper integral converges otherwise we say it diverges.
Example: Compute $\int_{1}^{\infty} \frac{1}{x^{n}} d x$. (To avoid an annoying case, assume $n \neq 1$.)
Improper int. $=\left.\lim _{b \rightarrow \infty} \frac{x^{-n+1}}{-n+1}\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \frac{b^{-n+1}}{-n+1}+\frac{1}{n-1}= \begin{cases}\frac{1}{n-1} & \text { if } n>1 \\ \infty & \text { if } n<1\end{cases}$
So the integral converges if $n>1$ and diverges to ∞ if $n<1$.
If $n=1$ it also diverges to ∞.
Example: (Probably don't have time to do this in class. We did some of this before, when we worked on work.)
Compute the work (energy) needed to get a mass m to a distance x from the center of the earth. (Assume $x>R$.)
$r=$ distance from center of earth.
$R=$ radius of earth.
$F=\frac{G m M}{r^{2}}=\frac{C}{r^{2}}=$ force on m at distance r.
Using 'slicing and summing' we found that the work (energy) needed to get a mass m from the surface to a distance x from the center of the earth (assume $x>R$) is

$$
W=\int_{R}^{x} \frac{C}{r^{2}} d r=\left.\frac{-C}{r}\right|_{R} ^{r}=\frac{C}{R}-\frac{C}{x} .
$$

To escape earth's gravity we let $x \rightarrow \infty \Rightarrow W \rightarrow \frac{C}{R}$, i.e. need at least $\frac{C}{R}$ units of energy to escape.

Example: Consider $f(x)=\frac{1}{x}$ for $1 \leq x<\infty$.
Area under curve $=\int_{1}^{\infty} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{\infty}=\infty$.
Volume of revolution around x-axis:
$\int_{1}^{\infty} \pi(1 / x)^{2} d x=\pi$ is finite.

Comparison test: Suppose $0 \leq f(x) \leq g(x)$
$\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges.
$\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges.

Examples:

$\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+1}} d x<\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x$ converges.
$\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x=\int_{0}^{1} \mathrm{e}^{-x^{2}} d x+\int_{1}^{\infty} \mathrm{e}^{-x^{2}} d x<\int_{0}^{1} \mathrm{e}^{-x^{2}} d x+\int_{1}^{\infty} \mathrm{e}^{-x} d x$ converges.

This is a pain. We can do better.
Limit comparison: Assume f, g are positive functions.
If $\lim _{x \rightarrow \infty} \frac{f}{g}=c$ and $c \neq 0, \infty$ then both improper integrals converge or both diverge.
Notes: 1. If $c \neq 0, \infty$ we write $f \sim g$.
2. Also called Asymptotic comparison.

Example: If $f=\frac{1}{\sqrt{x^{3}-1}}, g=\frac{1}{x^{3 / 2}}$ then $\lim _{x \rightarrow \infty} \frac{f}{g}=1$.
Thus, since $\int_{2}^{\infty} \frac{1}{x^{3 / 2}} d x$ converges so does $\int_{2}^{\infty} \frac{1}{\sqrt{x^{3}-1}} d x$.
Note: We need the lower limit in the integral >1 so $g(x)$ is defined on the entire interval we integrate over.
"Proof" of limit comparison:
$\lim \frac{f}{g}=c \Rightarrow$ there is an a such that $\frac{c}{2} g(x)<f(x)<2 c g(x)$ for $x>a$.
Thus $\frac{c}{2} \int_{a}^{\infty} g(x) d x<\int_{a}^{\infty} f(x) d x<2 c \int_{a}^{\infty} g(x) d x$. This shows both integrals converge or both diverge. QED

Other improper integrals:

Example: $\int_{0}^{1} \frac{1}{x^{1 / 3}} d x$ This is improper because $\frac{1}{x^{1 / 3}}=\infty$ when $x=0$.
We define $\int_{0^{+}}^{1} \frac{1}{x^{1 / 3}} d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{1}{x^{1 / 3}} d x$.
\Rightarrow Integral $=\left.\lim _{a \rightarrow 0^{+}} \frac{3}{2} x^{2 / 3}\right|_{a} ^{1}=\lim _{a \rightarrow 0^{+}} \frac{3}{2}-\frac{3}{2} a^{2 / 3}=\frac{3}{2}$.
\Rightarrow the integral converges.

P test:
$\int_{1}^{\infty} x^{p} d x \rightarrow\left\{\begin{array}{ll}p<-1 & \text { converges } \\ p \geq-1 & \text { diverges }\end{array} \quad \int_{0^{+}}^{1} x^{p} d x \rightarrow \begin{cases}p>-1 & \text { converges } \\ p \leq-1 & \text { diverges }\end{cases} \right.$

Always think about these. It is sometimes written as:
$\int_{1}^{\infty} \frac{1}{x^{p}} d x \rightarrow\left\{\begin{array}{lll}p>1 & \text { converges } \\ p \leq 1 & \text { diverges }\end{array} \quad \int_{0^{+}}^{1} \frac{1}{x^{p}} d x \rightarrow \begin{cases}p<1 & \text { converges } \\ p \geq 1 & \text { diverges }\end{cases}\right.$
Comparison works for these types of improper integrals also.
Example: $\int_{0^{+}}^{1} \frac{1}{\sqrt{x(x+1)}} d x$ converges since $\frac{1}{\sqrt{x(x+1)}} \leq \frac{1}{\sqrt{x}}$
Be careful -at first glance you might think the appropriate p for comparison is $p=1$.
Example: (change of variable)
Does $\int_{0}^{1^{-}} \frac{1}{\sqrt{1-x^{3}}} d x$ converge? (Improper at 1.)
Substitute $u=1-x \Rightarrow$ Integral $=\int_{0^{+}}^{1} \frac{1}{\sqrt{u} \sqrt{u^{2}-3 u+3}} d u$
Converges by comparison with $1 / \sqrt{u}$.

