18.01A Topic 12: Infinite series, harmonic series convergence tests.

Read: TB: 13.1 and 13.2 quickly, 13.3 to top p.442, 13.5 to p.453, 13.6 to p.457

MUST get comfortable with \sum notation.

Definition of series (= sum):

 $a_0 + a_1 + a_2 + \ldots + a_n$ (finite series).

 $a_0 + a_1 + a_2 + \ldots + a_n + \ldots$ (infinite series).

Sigma notation: $\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$

Note: The index n could be another letter, e.g. i, j. It's like the x in an integral.

Partial sums: $S_N = a_0 + a_1 + \ldots + a_N$ is called the N^{th} partial sum.

Definition of convergent series:

If $\lim_{N\to\infty} S_N = S$ exists the series converges to the sum S, otherwise it diverges.

Note If the limit is ∞ we say the series diverges to ∞ .

Example: Geometric series $\sum_{n=0}^{\infty} r^n$. For |r| < 1 this converges to $\frac{1}{1-r}$. For

 $|r| \ge 1$ the geometric series diverges. (Proof: $S_N = \frac{1 - r^{N+1}}{1 - r}$.)

Example: Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

Claim: This diverges to ∞ .

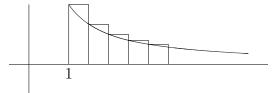
Proof 1: (This is also in the book so won't do in class.)

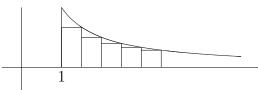
sum = $(1) + (\frac{1}{2}) + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots$ Each grouping of terms is $> \frac{1}{2}$, for instance the one starting with $\frac{1}{5}$ has 4 terms all $\ge \frac{1}{8}$. Continuing by taking twice as many terms in each successive group produces an infinite group of groups $> \frac{1}{3}$. an infinite sum of groups $> \frac{1}{2} \Rightarrow$ diverges to ∞ .

Proof 2 (integral test):

 $\sum_{1}^{\infty} \frac{1}{n} > \int_{1}^{\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{\infty} = \infty.$ (The inequality follows because the sum is a left

Riemann sum that overestimates the area under the curve.)





Left Riem. sum overest. integral

Right Riem. sum underest. integral

(continued)

2 18.01A topic 12

Example: $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ converges.

Proof: Series = right Riem. sum $< \int_0^\infty \frac{1}{x^2} dx = 1$.

Integral Test:

If f(x) is decreasing and $\lim_{x\to\infty} f(x) = 0$ then

 $\sum_{n=0}^{\infty} f(n)$ and $\int_{-\infty}^{\infty} f(x) dx$ either both converge or both diverge.

Proof: Left Riemann sum = $\sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(x) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann sum} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx > \text{right Riemann} = \sum_{n=n_0}^{\infty} f(n) > \int_{n_0}^{\infty} f(n) dx >$ $\sum_{n=n_0+1}^{\infty} f(n).$

N.B. the hypotheses that f(x) is decreasing and goes to 0.

Example: (p-test) Does $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converge or diverge?

The function $f(x) = \frac{1}{x^p}$ satisfies the hypotheses of the integral test.

Since $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges for p > 1 so does the sum.

Likewise it diverges for $p \leq 1$.

Example: Does $\sum_{n=0}^{\infty} \frac{1}{n \ln n}$ converge?

<u>answer:</u> $\int_2^\infty \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} d(\ln x) = \ln \ln x|_2^\infty = \infty \Rightarrow \text{diverges.}$ (Of course, must check that $\frac{1}{x \ln x}$ is decreasing.)

Comparison test:

Assume $0 \le f(n) \le g(n)$

If $\sum_{n=0}^{\infty} g(n)$ converges then so does $\sum_{n=0}^{\infty} f(n)$.

If $\sum_{n=0}^{\infty} f(n)$ diverges then so does $\sum_{n=0}^{\infty} g(n)$.

Example: $\sum \frac{1}{n^2+1} < \sum \frac{1}{n^2}$ converges.

18.01A topic 12 3

Asymptotic comparison test:

Assume a_n , b_n are positive.

If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and $c \neq 0, \infty$ then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

Proof: For large n (say for $n \ge N$) $\frac{a_n}{b_n} \approx c \implies$ for large n: $\frac{1}{2} c b_n < a_n < 2 c b_n$.

So
$$\sum_{n=N}^{\infty} a_n$$
 converges $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{2} c b_n$ also converges $\Rightarrow \sum_{n=1}^{\infty} b_n$ converges.

Likewise $\sum_{n=N}^{\infty} b_n$ converges $\Rightarrow \sum 2c b_n$ converges $\Rightarrow \sum a_n$ converges.

Note:
$$\sum_{n=N}^{\infty} a_n$$
 converges $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ converges.

Examples: Do the following converge or diverge?

1.
$$\sum \frac{2}{n^2 + n}$$
 (Converges –compare with $\sum \frac{1}{n^2}$.)

2.
$$\sum \frac{n^2+3}{1000n^3}$$
 (Diverges –asymptotically compare with $\sum \frac{1}{n}$.)

3.
$$\sum \frac{1}{(n+3)^2}$$
 (Converges –compare with $\sum \frac{1}{n^2}$.)

4.
$$\sum \frac{n}{\sqrt{n^2+2}}$$
 (Diverges –asymptotically compare with $\sum 1$.)

5. $\sum \frac{\tan^{-1} n}{n^3}$ (Converges –asymptotically compare with $\sum \frac{1}{n^3}$ –recall $\tan^{-1} x$ is bounded between $-\pi/2$ and $\pi/2$.)

Theorem: $\sum a_n$ converges $\Rightarrow a_n \to 0$

Proof:

$$\begin{array}{ccccc} Sol. & & & & \\ S_{n+1} & = & S_n & + & a_n \\ \downarrow & & \downarrow & & \downarrow \\ S & & S & & 0 \end{array}$$

Note: Converse of this is false, e.g. the harmonic series.

Example: (Telescoping series) $\sum \frac{1}{n(n+1)}$ converges by comparison to $\sum \frac{1}{n^2}$.

In this case we can actually compute the sum: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \Rightarrow$ telescoping series $S_N = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \ldots + (\frac{1}{N} - \frac{1}{N+1}) = 1 - \frac{1}{N+1} \to 1$