18.01A Topic 14: Introduction to probability, discrete random variables. Read: SN: P section 1

Read the supplementary notes

Repeatable experiments: Probability deals with repeatable experiments such as flipping a coin, rolling a die or measuring a distance. Gambling, polling and measuring are typical places where probability is used.

Discrete Random Variables Suppose the number of possible outcomes is finite.
Outcomes: $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Probabilities: $\quad P\left(x_{i}\right)=$ probability of outcome x_{i}.
Example: Roll 1 die.
Outcomes $=\{1,2,3,4,5,6\}$, with $P(j)=1 / 6$ for $j=1, \ldots, 6$.
E.g. if we roll a die many times we expect close to $1 / 6$ of the outcomes to be a 2 .

Example: Roll 2 die. There are two ways to describe the possible outcomes.

1. Ordered pairs $=\{(1,1),(1,2), \ldots,(6,6)\}$ with $P(i, j)=1 / 36$ for any of the pairs.
2. Totals $=\{2,3,4, \ldots, 12\}$, here $P(2)=1 / 36, P(7)=6 / 36$ (you will need to compute all the probabilities for the pset).
Example: Toss a fair coin. Outcomes $=\{\mathrm{H}, \mathrm{T}\}$, with $P(H)=P(T)=1 / 2$.
Example: Ask a random voter if they support candidate A.
Outcomes $=\{$ yes, no $\}$, with $P($ yes $)=p$ and $P($ no $)=1-p$.
Note: In all the cases we carefully state how to run the repeatable experiment.
Terms
Sample space $=$ set of possible outcomes $=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Probability function, $P\left(x_{j}\right)=$ probability of outcome x_{j}.
Trial $=$ one run of the 'experiment'.
Independent: Two trials are independent if their outcomes have no effect on each other. E.g., repeated flips of a coin are independent.

Probability Laws:
Range law: i) $0 \leq P\left(x_{j}\right) \leq 1$, ii) $P\left(x_{1}\right)+\ldots+P\left(x_{n}\right)=1$.
(This says the probability of an outcome is between 0 and 100% and the total probability of every possible outcome is 100%.
Addition law: $P\left(x_{i}\right.$ or $\left.x_{j}\right)=P\left(x_{i}\right)+P\left(x_{j}\right)\left(\right.$ provided $\left.x_{i} \neq x_{j}\right)$.
Example: Roll two dice. Let $A=$ 'the total is $<4^{\prime} \Rightarrow A=\{2,3\}$.
$P(A)=P(2$ or 3$)=P(2)+P(3)=1 / 36+2 / 36=1 / 12$.
Let $B=$ 'the total is odd' $=\{3,5,7,9,11\}$.
$\Rightarrow P(B)=P(3)+P(5)+P(7)+P(9)+P(11)=2 / 36+4 / 36+6 / 36+4 / 36+2 / 36=1 / 2$.
Multiplication law: If two trials are independend the $P\left(x_{i}\right.$ then $\left.x_{j}\right)=P\left(x_{i}\right) \cdot P\left(x_{j}\right)$. (continued)

Example: Two tosses of a coin. $P(\mathrm{HH})=1 / 4=P(\mathrm{HT})=P(\mathrm{TH}))=P(\mathrm{TT})$.
Example: Toss a fair die 3 times, what is the probablility of getting and odd number each time.
Let $A=\{1,3,5\}$. On any one toss $P(A)=1 / 2$. Since repeated tosses are independent $P(A$ then A then $A)=P(A) \cdot P(A) \cdot P(A)=1 / 8$.

A Finite Random Variable X consists of
i) A list $x_{1}, x_{2} \ldots, x_{n}$ of values X can take.
ii) A probability function $P\left(x_{j}\right)$.

Remark: The new requirement is that the outcomes have to be numbers.
Examples: 1. Roll a die, $X=$ number of spots.
2. Roll a die, $Y=(\text { number of spots })^{2}$.

Expectation (or mean or expected value) of the finite random variable X :

$$
E(X)=x_{1} P\left(x_{1}\right)+\ldots+x_{n} P\left(x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)
$$

Example: Roll a die, let $X=$ number of spots.
$E(X)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{21}{6}=3.5$.

Interpretation:

1. The expected value is the average over a lot of trials. E.g., roll a die, if I pay you $\$ 1$ per spot then over a lot of rolls you would average $\$ 3.5$ per roll.
Note, you would never be paid $\$ 3.5$ on any one turn, it is the expected average over many turns.
2. Expectation is a weighted average like center of mass.

Concept question: How much would you be willing to pay to roll the die?
Example: Roll a die, you win $\$ 5$ if it's a 1 and lose $\$ 2$ if it's not. Let $X=$ your win or loss $\Rightarrow P(X=5)=1 / 6$ and $P(X=-2)=5 / 6$.
$E(X)=5 \cdot \frac{1}{6}-2 \frac{5}{6}=-\frac{5}{6}$.
Concept question: Is the above bet a good one?

Infinite discrete random variable

i) X takes values x_{1}, x_{2}, \ldots
ii) Probability function $\sum_{1}^{\infty} P\left(x_{j}\right)=1$.

Example: (From supplementary notes) A trial consists of tossing a fair coin until it comes up heads. Let $X=$ number of tosses \Rightarrow
Total probability $=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=1$.

n	1	2	3	4	\ldots
toss pattern	H	TH	TTH	TTH	\ldots
$P(n)$	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	\ldots

Question: If I paid you $\$ n$ for a trial of length n, what would you pay for a turn?
answer: Expectation $E(X)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots=2$. (The supplementary notes give a nice method for finding this sum.)

Poisson Random Variable with parameter m
i) X takes values $0,1,2,3, \ldots$
ii) $P(k)=\mathrm{e}^{-m} \frac{m^{k}}{k!}$. (The factor e^{-m} is chosen to give total probability 1.)
iii) Poisson random variables model events that occur sparsely (i.e. with low prob.).

Examples: 1. Defects in manufacturing.
2. Errors in data transmission.
3. Number of cars in an hour at a rural tollbooth.
4. Number of chocolate chips in a cookie.

Theorem: $\quad E(X)=m$.
Proof: $\quad E(X)=\sum_{k=0}^{\infty} k \mathrm{e}^{-m} \frac{m^{k}}{k!}=\mathrm{e}^{-m}\left(m+\frac{m^{2}}{1!}+\frac{m^{3}}{2!}+\ldots\right)$

$$
=m \mathrm{e}^{-m}\left(1+\frac{m}{1!}+\frac{m^{2}}{2!}+\ldots\right)=m \mathrm{e}^{-m} \mathrm{e}^{m}=m .
$$

Example: A manufacturer of widgets knows that $1 / 200$ will be defective. What is the probability that a box of 144 contains no defective widgets?
answer: Since being defective is rare we can model the number of defective widgets in a box as a Poisson R.V. X with mean $m=144 / 200$.
We need to find $P(X=0)$:
$P(X=0)=\mathrm{e}^{-m} \frac{m^{0}}{0!}=\mathrm{e}^{-144 / 200}=\underline{.487}$.
What is the probability that more than 2 are defective?
answer: $P(X>2)=$
$1-P(X=0,1,2)=1-\mathrm{e}^{-m}\left(1+m+\frac{m^{2}}{2!}\right)=.037$.

Histograms

If we ran many trials and made a histogram of the percentage of each outcome, the result should look like the graph of $P\left(x_{j}\right)$ vs. x_{j}.
Or we make a histogram of the count for each outcome. The histograms at right give examples.

Histogram of percentages (Poisson distr. with $\mu=4.5$)
90's: xx

80's: xxx
70's: xxxx
60's: xxx
50's: x
Histogram of counts of test scores

