18.01A Topic 14: Introduction to probability, discrete random variables. Read: SN: P section 1

Read the supplementary notes

Repeatable experiments: Probability deals with repeatable experiments such as flipping a coin, rolling a die or measuring a distance. Gambling, polling and measuring are typical places where probability is used.

Discrete Random Variables Suppose the number of possible outcomes is finite. Outcomes: $\{x_1, x_2, \ldots, x_n\}$.

Probabilities: $P(x_i)$ = probability of outcome x_i .

Example: Roll 1 die.

Outcomes = $\{1, 2, 3, 4, 5, 6\}$, with P(j) = 1/6 for $j = 1, \dots, 6$.

E.g. if we roll a die many times we expect close to 1/6 of the outcomes to be a 2.

Example: Roll 2 die. There are two ways to describe the possible outcomes.

1. Ordered pairs = $\{(1, 1), (1, 2), \dots, (6, 6)\}$ with P(i, j) = 1/36 for any of the pairs.

2. Totals = $\{2, 3, 4, \dots, 12\}$, here P(2) = 1/36, P(7) = 6/36 (you will need to compute all the probabilities for the pset).

Example: Toss a fair coin. Outcomes = {H, T}, with P(H) = P(T) = 1/2.

Example: Ask a random voter if they support candidate A. Outcomes = { yes, no}, with P(yes) = p and P(no)=1-p.

Note: In all the cases we carefully state how to run the repeatable experiment.

Terms

Sample space = set of possible outcomes = $\{x_1, x_2, \ldots, x_n\}$. Probability function, $P(x_j)$ = probability of outcome x_j . Trial = one run of the 'experiment'.

Independent: Two trials are independent if their outcomes have no effect on each other. E.g., repeated flips of a coin are independent.

Probability Laws:

Range law: i) $0 \le P(x_i) \le 1$, ii) $P(x_1) + \ldots + P(x_n) = 1$.

(This says the probability of an outcome is between 0 and 100% and the total probability of every possible outcome is 100%.

Addition law: $P(x_i \text{ or } x_i) = P(x_i) + P(x_i) \text{ (provided } x_i \neq x_i).$

Example: Roll two dice. Let A = 'the total is $\langle 4' \Rightarrow A = \{2, 3\}$.

P(A) = P(2 or 3) = P(2) + P(3) = 1/36 + 2/36 = 1/12.

Let B = 'the total is odd' = $\{3, 5, 7, 9, 11\}$.

 $\Rightarrow P(B) = P(3) + P(5) + P(7) + P(9) + P(11) = 2/36 + 4/36 + 6/36 + 4/36 + 2/36 = 1/2.$

Multiplication law: If two trials are independend the $P(x_i \text{ then } x_j) = P(x_i) \cdot P(x_j)$. (continued) **Example:** Two tosses of a coin. P(HH) = 1/4 = P(HT) = P(TH)) = P(TT).

Example: Toss a fair die 3 times, what is the probability of getting and odd number each time.

Let $A = \{1, 3, 5\}$. On any one toss P(A) = 1/2. Since repeated tosses are independent $P(A \text{ then } A \text{ then } A) = P(A) \cdot P(A) \cdot P(A) = 1/8$.

A Finite Random Variable X consists of

i) A list x_1, x_2, \ldots, x_n of values X can take.

ii) A probability function $P(x_j)$.

Remark: The new requirement is that the outcomes have to be numbers.

Examples: 1. Roll a die, X = number of spots. 2. Roll a die, Y = (number of spots)².

Expectation (or **mean** or **expected value**) of the finite random variable X:

$$E(X) = x_1 P(x_1) + \ldots + x_n P(x_n) = \sum_{i=1}^n x_i P(x_i)$$

Example: Roll a die, let X = number of spots.

 $E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5.$

Interpretation:

1. The expected value is the average over a lot of trials. E.g., roll a die, if I pay you \$1 per spot then over a lot of rolls you would average \$3.5 per roll.

Note, you would never be paid \$3.5 on any one turn, it is the expected average over many turns.

2. Expectation is a weighted average like center of mass.

Concept question: How much would you be willing to pay to roll the die?

Example: Roll a die, you win \$5 if it's a 1 and lose \$2 if it's not. Let X = your win or loss $\Rightarrow P(X = 5) = 1/6$ and P(X = -2) = 5/6. $E(X) = 5 \cdot \frac{1}{6} - 2\frac{5}{6} = -\frac{5}{6}$.

Concept question: Is the above bet a good one?

Infinite discrete random variable

1) X takes values
$$x_1, x_2, \dots$$

ii) Probability function $\sum_{j=1}^{\infty} P(x_j) = 1$

(continued)

Example: (From supplementary notes) A trial consists of tossing a fair coin until it comes up heads. Let X = number of tosses \Rightarrow Total probability = $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 1$. P(n)

n	1	2	3	4	
toss pattern	Н	TH	TTH	TTH	
P(n)	1/2	1/4	1/8	1/16	

Question: If I paid you n for a trial of length n, what would you pay for a turn? <u>answer</u>: Expectation $E(X) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \ldots = 2$. (The supplementary notes give a nice method for finding this sum.)

Poisson Random Variable with parameter m

i) X takes values 0, 1, 2, 3, ...

ii) $P(k) = e^{-m} \frac{m^k}{k!}$. (The factor e^{-m} is chosen to give total probability 1.)

iii) Poisson random variables model events that occur sparsely (i.e. with low prob.).

Examples: 1. Defects in manufacturing.

- 2. Errors in data transmission.
- 3. Number of cars in an hour at a rural tollbooth.
- 4. Number of chocolate chips in a cookie.

Theorem: E(X) = m.

Proof:
$$E(X) = \sum_{k=0}^{\infty} k e^{-m} \frac{m^k}{k!} = e^{-m} (m + \frac{m^2}{1!} + \frac{m^3}{2!} + \dots)$$

= $m e^{-m} (1 + \frac{m}{1!} + \frac{m^2}{2!} + \dots) = m e^{-m} e^m = m$

Example: A manufacturer of widgets knows that 1/200 will be defective. What is the probability that a box of 144 contains no defective widgets?

answer: Since being defective is rare we can model the number of defective widgets in a box as a Poisson R.V. X with mean m = 144/200.

We need to find
$$P(X = 0)$$
:
 $P(X = 0) = e^{-m} \frac{m^0}{0!} = e^{-144/200} = .487$

What is the probability that more than 2 are defective? answer: P(X > 2) =

$$1 - P(X = 0, 1, 2) = 1 - e^{-m}(1 + m + \frac{m^2}{2!}) = .037.$$

Histograms

If we ran many trials and made a histogram of the percentage of each outcome, the result should look like the graph of $P(x_j)$ vs. x_j .

Or we make a histogram of the count for each outcome. The histograms at right give examples.

