18.02A Topic 17: Vectors, dot product.

Read: TB: 17.3, 18.1, 18.2

Vectors

Two views: First the geometric and then the analytic.

Geometric view

Vector = length and direction: (Discuss scaling, scalars)

Length: denoted $|\mathbf{A}|$, also called magnitude or norm

Addition: (head to tail)

Subtraction: either tail to tail or $\mathbf{A} + (-\mathbf{B})$

Analytic or algebraic view

Place the tail of **A** at the origin \Rightarrow the coordinates of the head determine **A**:

$$\mathbf{A} = \langle a_1, \, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}.$$

You've seen the vectors \mathbf{i} and \mathbf{j} in physics. They have coordinates $\mathbf{i} = \langle 1, 0 \rangle$, $\mathbf{j} = \langle 0, 1 \rangle$

Notation

- 1, (a_1, a_2) indicate as point in the plane.
- 2. $\langle a_1, a_2 \rangle$ indicates the vector from the origin to the point (a_1, a_2) . Of course, this vector can be translated anywhere and $\langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}$.
- 3. $\overrightarrow{\mathbf{P}} = \overrightarrow{\mathbf{OP}}$ is the vector from the origin to P.
- 4. In print we will often drop the arrow and just use the bold face to indicate a vector, i.e. $\mathbf{P} \equiv \mathbf{P}$.

1

Discuss scaling, scalars

Length:
$$|\mathbf{A}| = \sqrt{a_1^2 + a_2^2}$$

Addition:
$$(a_1\mathbf{i} + a_2\mathbf{j}) + (b_1\mathbf{i} + b_2\mathbf{j}) = (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{j}$$

$$\Leftrightarrow \langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle$$

Discuss
$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P}$$
 –geom. and anal

(continued)

18.02A topic 17

Dot product (scalar product)

Geometric definition:

(algebraic view)

 $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$

 $\mathbf{A} \cdot \mathbf{B} = a_1 b_1 + a_2 b_2$ (Hard to get geometrically) proof: Law of cosines: (won't do in class)

$$\mathbf{A} - \mathbf{B}$$

$$|\mathbf{A} - \mathbf{B}|^2 = |\mathbf{A}|^2 + |\mathbf{B}|^2 - 2|\mathbf{A}||\mathbf{B}|\cos\theta$$

$$\Rightarrow (a_1^2 + a_2^2) + (b_1^2 + b_2^2) - ((a_1 - b_1)^2 + (a_2 - b_2)^2)$$

$$= 2|\mathbf{A}||\mathbf{B}|\cos\theta$$

$$\Rightarrow a_1b_1 + a_2b_2 = |\mathbf{A}||\mathbf{B}|\cos\theta. \quad \text{QED}$$

Algebraic law: $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$.

Follows from the algebraic view of dot product.

Unit vectors

Special vectors: \mathbf{i} and \mathbf{j} . Note $\mathbf{i} \cdot \mathbf{i} = 1 = \mathbf{j} \cdot \mathbf{j}$ and $\mathbf{i} \cdot \mathbf{j} = 0$.

Unit vector: \mathbf{u} : $|\mathbf{u}| = 1$. Often indicate by $\hat{\mathbf{u}}$.

$$\mathbf{A} \cdot \mathbf{u} = |\mathbf{A}| \cos \theta$$
$$\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2$$
$$\mathbf{A} \perp \mathbf{B} \Leftrightarrow \mathbf{A} \cdot \mathbf{B} = 0$$

 $|\mathbf{A}|\cos\theta = \text{component of } \mathbf{A} \text{ indirection of } \widehat{\mathbf{u}}$

Components or projection:

The component of ${\bf A}$ in the direction of $\widehat{\bf u}$ is ${\bf A}\cdot\widehat{\bf u}$

For a non-unit vector: the component of **A** in the direction of **B** is the component of **A** in the direction of $\widehat{\mathbf{u}} = \frac{\mathbf{B}}{|\mathbf{B}|}$.

Trig identity $\cos(\beta - \alpha) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Unit vectors: $\mathbf{u} = \cos \alpha \, \mathbf{i} + \sin \alpha \, \mathbf{j}, \quad \mathbf{v} = \cos \beta \, \mathbf{i} + \sin \beta \, \mathbf{j}$

Angle between them is $\theta = \beta - \alpha$

Geometric: $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos \theta = \cos \theta = \cos(\beta - \alpha)$

Analytic: $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.

Example: $P = (-5,0), Q = (1,3) \Rightarrow \overrightarrow{\mathbf{PQ}} = 6\mathbf{i} + 3\mathbf{j} = \langle 6, 3 \rangle.$

Example: Show $\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{QP} = 0$

(continued)

18.02A topic 17 3

Example: Find 2 unit vectors parallel to $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$.

$$|\mathbf{v}| = 5$$
: $u_1 = \frac{3}{4}\mathbf{i} - \frac{4}{5}\mathbf{j}$, $\mathbf{u_2} = -\mathbf{u_1}$.

Example: Show the sum of the medians of a triangle = 0.

Median of
$$\overline{AB} = P = \frac{1}{2}(\mathbf{A} + \mathbf{B}) \Rightarrow \mathbf{CP} = \frac{1}{2}(\mathbf{B} + \mathbf{A}) - \mathbf{C}$$
.

Likewise:
$$\overrightarrow{\mathbf{BQ}} = \frac{1}{2}(\mathbf{A} + \mathbf{C}) - \mathbf{B}, \quad \overrightarrow{\mathbf{AR}} = \frac{1}{2}(\mathbf{B} + \mathbf{C}) - \mathbf{A}.$$

$$\Rightarrow$$
 Sum of medians $= \overrightarrow{\mathbf{CP}} + \overrightarrow{\mathbf{BQ}} + \overrightarrow{\mathbf{AR}} = 0.$

Example: Let A = (1,2), B = (2,3) and C = (2,-1). Find the cosine of $\angle BAC$.

Let
$$\theta$$
 be the angle $\Rightarrow \cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|AB| |AC|}$.

$$\overrightarrow{\mathbf{AB}} = \langle 1, 1 \rangle, \quad \overrightarrow{\mathbf{AC}} = \langle 1, -3 \rangle$$

$$\Rightarrow \cos \theta = \frac{1 - 3}{\sqrt{2}\sqrt{10}} = -\frac{2}{\sqrt{20}} = \frac{1}{\sqrt{5}}.$$

Example: Velocities are vectors

A river flows at 3mph and a rower rows at 6mph. What heading should he use to get straight across a river?

Need
$$\sin \theta = \frac{3}{6} \implies \theta \pi / 6$$

$$\Rightarrow \sin \theta = \frac{2}{2\sqrt{2}} \Rightarrow \theta = \pi/4.$$

Same question with river=6 mph, row=3 mph:

$$\Rightarrow \sin \theta = \frac{6}{3} \Rightarrow \text{No such } \theta$$

Three dimensions

Exactly the same except third coordinate: $a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} = (a_1, a_2, a_3)$

Example: Show A = (4,3,6), B = (-2,0,8), C = (1,5,0) are the vertices of a right triangle.

Two legs of the triangle are
$$\overrightarrow{\mathbf{AC}} = \langle -3, 2, -6 \rangle$$
 and $\overrightarrow{\mathbf{AB}} = \langle -6, -3, 2 \rangle$

$$\Rightarrow \overrightarrow{AC} \cdot \overrightarrow{AB} = 18 - 6 - 12 = 0 \Rightarrow \text{ orthogonal.}$$

