18.02A Topic 19: Matrices, inverses.

Read: SN: M.1, M. 2
Introduction Making Halloween bags (contents of bags):
Kids Teens Adults
Lollipops $\begin{array}{llll}2 & 1 & 0\end{array}$
Snickers $\begin{array}{llll}1 & 2 & 2\end{array}$
Candy corn $1 \begin{array}{lll}1 & 2\end{array}$
Output $=$ no. bags $=\left(\begin{array}{c}K \\ T \\ A\end{array}\right)=\overrightarrow{\mathbf{x}} ; \quad$ Input $=$ amount candy $=\left(\begin{array}{c}L \\ S \\ C\end{array}\right)=\overrightarrow{\mathbf{c}}$
Given $\overrightarrow{\mathbf{x}}$ can find $\overrightarrow{\mathbf{c}}$, i.e. $L=2 \cdot K+1 \cdot T+0 \cdot A$ etc.
Given $\overrightarrow{\mathbf{c}}$ can find $\overrightarrow{\mathrm{x}}$ by solving simultaneous equations.
Matrix notation
$\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2\end{array}\right)\left(\begin{array}{c}K \\ T \\ A\end{array}\right)=\left(\begin{array}{c}L \\ S \\ C\end{array}\right)=\left(\begin{array}{c}(2,1,0) \cdot \overrightarrow{\mathbf{x}} \\ (1,2,1) \cdot \overrightarrow{\mathbf{x}} \\ (1,2,2) \cdot \overrightarrow{\mathbf{x}}\end{array}\right) \quad$ Or simply: $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{c}}$
The matrix $A$ is the coefficient matrix and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ is called a column vector.
Demonstrate matrix multiplication: requires two hands. $\left(\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right) \cdot\binom{1}{3}=\binom{21}{7}$.
Sizes $n \times m=n$ rows and $m$ columns
Examples:
$\left(\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right): 2 \times 2\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right): 3 \times 1 \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right): 3 \times 3 \quad(1,2,3): 3 \times 1, \quad(3): 1 \times 1$
Matrix multiplication extends to matrix times matrix.
$A \cdot B: i, j$ entry $=<i^{\text {th }}$ row of $A>\cdot<j^{\text {th }}$ column of $B>$
$\Rightarrow$ must have \#columns of $A=$ \#rows of $B$.
Examples:
$\left(\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right) \cdot\left(\begin{array}{ccc}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right)=\left(\begin{array}{ccc}16 & 38 & 60 \\ 5 & 11 & 17\end{array}\right) \quad\left(\begin{array}{cc}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right) \cdot\left(\begin{array}{cc}6 & 5 \\ 1 & 2\end{array}\right)=\left(\begin{array}{cc}8 & 9 \\ 22 & 23 \\ 36 & 37\end{array}\right)$
$\left(\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$ not valid expression.
(continued)

## Algebraic laws

1. Identity: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot A=A, \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot A=A$, etc.

In general, $I_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ etc.
If the size is clear from context, we just write $I: I \cdot A=A \cdot I=A$
2. Addition: $A+B$ add termwise (must be the same size)
3. Scalar multiplication: $c A$ multiply scalar times matrix termwise.
4. Distributive law: $(A+B) \cdot C=A \cdot C+B \cdot C$ (easy to show)
5. Associative law: $(A B) C=A(B C)$ (challlenging to show)
6. NOT commutative: $A B \neq B A$. (Doesn't even make sense -see examples above.)

## Inverses

For scalars: $a x=c \Rightarrow x=a^{-1} c$
What is $a^{-1}$ ? Answer: the number such that $a^{-1} a=1$.
Matrices are the same: $A^{-1}$ is the matrix (if it exists) such that $A^{-1} A=I$
$\Rightarrow$ to solve $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{c}}$ for $\overrightarrow{\mathbf{x}}$
Multiply by $A^{-1}$ on left: $\Rightarrow A^{-1} A \overrightarrow{\mathbf{x}}=A^{-1} \overrightarrow{\mathbf{c}}$
$\Rightarrow I \overrightarrow{\mathbf{x}}=A^{-1} \overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{x}}=A^{-1} \overrightarrow{\mathbf{c}}$
Because matrix multiplication is not commutative it is important to multiply on the correct side. E.g. in the example above $A \overrightarrow{\mathbf{x}} A^{-1}$ would make no sense.

When do we have inverses?
For scalars: $a^{-1}$ exists if $a \neq 0$.
For matrices: $A$ must be square and $|A| \neq 0$
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \Rightarrow A^{-1}=\frac{1}{|A|}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$

## Example:

$\left(\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right)^{-1}=\frac{1}{7}\left(\begin{array}{rr}2 & -5 \\ -1 & 6\end{array}\right)$ (verify this by multiplication)

Finding inverses via the adjoint method
Start with $A$
$\rightarrow$ matrix of minors
$\rightarrow$ matrix of cofactors (use $\left(\begin{array}{ccc}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right)$ to change signs)
$\rightarrow$ Adjoint (transpose rows with columns)
$\rightarrow$ Divide by $|A|$
Example: $\quad A=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2\end{array}\right)$
$|A|=-4$ (Do this first, to see if the inverse even exists)
Minors: $\left(\begin{array}{rrr}-2 & 0 & 1 \\ 2 & 4 & 3 \\ 2 & 4 & 1\end{array}\right)$
Cofactors: $\left(\begin{array}{rrr}-2 & 0 & 1 \\ -2 & 4 & -3 \\ 2 & -4 & 1\end{array}\right)$
Adjoint: $\left(\begin{array}{rrr}-2 & -2 & 2 \\ 0 & 4 & -4 \\ 1 & -3 & 1\end{array}\right)$
$A^{-1}=-\frac{1}{4}\left(\begin{array}{rrr}-2 & -2 & 2 \\ 0 & 4 & -4 \\ 1 & -3 & 1\end{array}\right)$
Check this by multiplying $A \cdot A^{-1}$.
NOTE: This works for $2 \times 2$ case also.

