18.02A Topic 19: Matrices, inverses. Read: SN: M.1, M.2

Introduction Making Halloween bags (contents of bags):

Kids	Teens	Adults
2	1	0
1	2	2
1	2	2
	Kids 2 1 1	Kids Teens 2 1 1 2 1 2 1 2

Output = no. bags =
$$\begin{pmatrix} K \\ T \\ A \end{pmatrix} = \vec{\mathbf{x}};$$
 Input = amount candy = $\begin{pmatrix} L \\ S \\ C \end{pmatrix} = \vec{\mathbf{c}}$

Given $\overrightarrow{\mathbf{x}}$ can find $\overrightarrow{\mathbf{c}}$, i.e. $L = 2 \cdot K + 1 \cdot T + 0 \cdot A$ etc. Given $\overrightarrow{\mathbf{c}}$ can find $\overrightarrow{\mathbf{x}}$ by solving simultaneous equations.

Matrix notation

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} K \\ T \\ A \end{pmatrix} = \begin{pmatrix} L \\ S \\ C \end{pmatrix} = \begin{pmatrix} (2,1,0) \cdot \overrightarrow{\mathbf{x}} \\ (1,2,1) \cdot \overrightarrow{\mathbf{x}} \\ (1,2,2) \cdot \overrightarrow{\mathbf{x}} \end{pmatrix}$$
 Or simply: $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{c}}$
The matrix A is the **coefficient matrix** and $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ is called a **column vector**.

Demonstrate matrix multiplication: requires two hands. $\begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 21 \\ 7 \end{pmatrix}$. Sizes $n \times m = n$ rows and m columns

Examples:

$$\begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix}: 2 \times 2 \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}: 3 \times 1 \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}: 3 \times 3 \quad (1, 2, 3): 3 \times 1, \quad (3): 1 \times 1$$

Matrix multiplication extends to matrix times matrix. $A \cdot B$: i, j entry = $\langle i^{\text{th}}$ row of $A > \cdot \langle j^{\text{th}}$ column of B > \Rightarrow must have #columns of A =#rows of B.

Examples:

$$\begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 16 & 38 & 60 \\ 5 & 11 & 17 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 9 \\ 22 & 23 \\ 36 & 37 \end{pmatrix}$$
$$\begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \text{ not valid expression.}$$

,

(continued)

Algebraic laws

1. Identity:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot A = A$$
, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot A = A$, etc
In general, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ etc.

If the size is clear from context, we just write $I: I \cdot A = A \cdot I = A$

2. Addition: A + B add termwise (must be the same size)

- 3. Scalar multiplication: cA multiply scalar times matrix termwise.
- 4. Distributive law: $(A + B) \cdot C = A \cdot C + B \cdot C$ (easy to show)
- 5. Associative law: (AB)C = A(BC) (challenging to show)
- 6. **NOT** commutative: $AB \neq BA$. (Doesn't even make sense –see examples above.)

Inverses

For scalars: $ax = c \Rightarrow x = a^{-1}c$ What is a^{-1} ? Answer: the number such that $a^{-1}a = 1$. Matrices are the same: A^{-1} is the matrix (if it exists) such that $A^{-1}A = I$ \Rightarrow to solve $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{c}}$ for $\overrightarrow{\mathbf{x}}$ Multiply by A^{-1} on left: $\Rightarrow A^{-1}A\overrightarrow{\mathbf{x}} = A^{-1}\overrightarrow{\mathbf{c}}$ $\Rightarrow I\overrightarrow{\mathbf{x}} = A^{-1}\overrightarrow{\mathbf{c}}$ $\Rightarrow \overrightarrow{\mathbf{x}} = A^{-1}\overrightarrow{\mathbf{c}}$

Because matrix multiplication is not commutative it is important to multiply on the correct side. E.g. in the example above $A \overrightarrow{\mathbf{x}} A^{-1}$ would make no sense.

When do we have inverses?

For scalars: a^{-1} exists if $a \neq 0$.

For matrices: A must be square and $|A| \neq 0$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Example:

$$\begin{pmatrix} 6 & 5 \\ 1 & 2 \end{pmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -5 \\ -1 & 6 \end{pmatrix}$$
 (verify this by multiplication)

(continued)

Finding inverses via the adjoint method

Start with A \rightarrow matrix of minors \rightarrow matrix of cofactors (use $\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$ to change signs) \rightarrow Adjoint (transpose rows with columns) \rightarrow Divide by |A|Example: $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ |A| = -4 (Do this first, to see if the inverse even exists) Minors: $\begin{pmatrix} -2 & 0 & 1 \\ 2 & 4 & 3 \\ 2 & 4 & 1 \end{pmatrix}$ Cofactors: $\begin{pmatrix} -2 & 0 & 1 \\ -2 & 4 & -3 \\ 2 & -4 & 1 \end{pmatrix}$ Adjoint: $\begin{pmatrix} -2 & -2 & 2 \\ 0 & 4 & -4 \\ 1 & -3 & 1 \end{pmatrix}$ $A^{-1} = -\frac{1}{4} \begin{pmatrix} -2 & -2 & 2 \\ 0 & 4 & -4 \\ 1 & -3 & 1 \end{pmatrix}$

Check this by multiplying $A \cdot A^{-1}$.

NOTE: This works for 2×2 case also.