18.02A Topic 22: Vector derivatives: velocity, curvature (2 hours).

Read: TB: 17.4, 17.5

General parametric curve

Think of it as a point moving in time.

$$\mathbf{r}(t) = x(t)\,\hat{\mathbf{i}} + y(t)\,\hat{\mathbf{j}} = \langle x(t), y(t) \rangle = \mathbf{position \ vector}$$

Examples: (from last time)

Circle:
$$\mathbf{r}(t) = a\langle \cos t, \sin t \rangle$$

 $\Rightarrow \mathbf{r}'(t) = a\langle -\sin t, \cos t \rangle$

Line:
$$\mathbf{r}(t) = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \mathbf{A} + t\mathbf{v}$$

$$\Rightarrow \mathbf{r}'(t) = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \mathbf{v}$$

Arclength:

Geometrically this means choose a starting point P on the curve and refer to points on the curve by their distance along the curve from P. (This is like mileage markers along the highway.)

Notation: s = arclength

Geometric approach: (see picture above)

$$ds = \sqrt{(dx)^2 + (dy)^2} \implies \frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}.$$

Note: $\frac{ds}{dt}$ = speed (has units distance/time).

Example: Find $\frac{ds}{dt}$ and arclength for the curve $\mathbf{r}(t) = \langle t, t^2 \rangle$ between (0,0) and (1,1)

$$\frac{ds}{dt} = \sqrt{1 + (2t)^2} \implies L = \int_0^1 \sqrt{1 + 4t^2} \, dt.$$

Velocity: If something moves it has a velocity = speed and direction. How do we find it for $\mathbf{r}(t)$? What does it mean geometrically?

Answer: Instantaneous velocity = $\mathbf{r}'(t) = \frac{d\mathbf{r}}{dt} = \langle x'(t), y'(t) \rangle$

Reasons:

Over a small time dt the point moves a (vector) $d\mathbf{r} = dx \, \mathbf{i} + dy \, \mathbf{j}$ and its velocity (displacement/time) is $\frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j}$

(continued)

18.02A topic 22

Tangent vector: In the picture above, we see that as Δt shrinks to 0 the vector $\frac{\Delta \mathbf{r}}{\Delta t}$ becomes tangent to the curve

When the parameter is t we can refer to $\mathbf{r}'(t)$ as the 'velocity'. In general, the derivative is given its geometric name: the 'tangent vector'.

Physics approach: (get same formulas)

$$\frac{ds}{dt}$$
 = speed = $|\mathbf{r}'(t)| = |\langle x'(t), y'(t) \rangle| = \sqrt{(x')^2 + (y')^2}$.

Unit tangent vector

The unit vector in the direction of the tangent vector is denoted $\mathbf{T} = \frac{\mathbf{r}(t)}{|\mathbf{r}'(t)|}$. It's called the unit tangent vector.

Note
$$\frac{ds}{dt}\mathbf{T} = \mathbf{r}'(t)$$
.

Nomenclature summary:

Here are a list of names and formulas. We will motivate and derive them below.

 $\mathbf{r}(t) = \text{position}.$

 $s = \text{arclength}, \text{ speed} = v = \frac{ds}{dt}.$

 $\mathbf{v}(t) = \mathbf{r}'(t) = \frac{ds}{dt}\mathbf{T}$ = tangent vector, velocity.

 $\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} = \text{acceleration}.$

T = unit tangent vector, N = unit normal vector.

 $\kappa = \text{curvature}, \quad R = 1/\kappa = \text{radius of curvature}.$

 $\varphi = \text{tangent angle}.$

C =Center of curvature = center of best fitting circle (has radius = radius of curvature).

Formulas: (explained in the following pages)

1. Speed =
$$\frac{ds}{dt} = |\mathbf{v}(t)| = \sqrt{(x')^2 + (y')^2}$$
.

2.
$$\mathbf{v} = \frac{ds}{dt}\mathbf{T}$$
, $\mathbf{T} = \frac{\mathbf{v}}{ds/dt}$

3.
$$\mathbf{a}(t) = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2 \mathbf{N} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{v^2}{R}\mathbf{N}$$

4.
$$\kappa = \frac{d\mathbf{T}}{ds} = \frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^3}$$
.

4a. For plane curves
$$\mathbf{r}(t) = x(t)\,\hat{\mathbf{i}} + y(t)\,\hat{\mathbf{j}}: \quad \kappa = \frac{|x''y' - x'y''|}{((x')^2 + (y')^2)^{3/2}}.$$

5.
$$\mathbf{v} \times (\mathbf{a} \times \mathbf{v}) = \kappa v^4 \mathbf{N}$$
.

6.
$$C = \mathbf{r} + R \mathbf{N} = \mathbf{r} + \frac{1}{\kappa} \mathbf{N}$$
.

Example: Cycloid
$$\mathbf{r}(\theta) = a\langle \theta - \sin \theta, 1 - \cos \theta \rangle$$

$$\frac{d\mathbf{r}}{d\theta} = a\langle 1 - \cos\theta, \sin\theta \rangle = 2a\langle \sin^2\theta/2, \sin\theta/2\cos\theta/2 \rangle$$

$$\left| \frac{d\mathbf{r}}{d\theta} \right| = \frac{ds}{d\theta} = 2a\sqrt{\sin^2 \theta/2} = 2a|\sin \theta/2|$$

At the cusp $ds/d\theta = 0$, i.e., physically, stop to make a sudden 180 degree turn.

For one arch, $0 < \theta < 2\pi$, $\frac{ds}{d\theta} = 2a\sin\theta/2$

$$\mathbf{T} = \frac{2a\langle \sin^2\theta/2, \sin\theta/2\cos\theta/2\rangle}{2a\sin\theta/2} = \langle \sin\theta/2, \cos\theta/2\rangle \text{ (a unit vector!)}$$

$$|AP| = \int_0^\theta \frac{ds}{d\theta} d\theta$$
$$= -4a\cos\theta/2|_0^\theta$$
$$= 4a\cos\theta/2$$

$$\Rightarrow |OA| = 4a \text{ (Wren's theorem)}$$

Curvature: How sharply curved is the trajectory?

That is, how fast does the tangent vector turn in per unit arclenth? This is tricky so pay attention. Curvature is the rate T is turning per unit arclength. That is, $\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$.

(Smaller circle = faster turning = greater curvature.)

Note well, curvature is a geometric idea—we measure the rate with respect to arclength. The speed the point moves over the trajectory is irrelevant.

T is a unit vector \Rightarrow **T** = $\langle \cos \varphi, \sin \varphi \rangle$ where φ is the tangent angle.

$$\Rightarrow \frac{d\mathbf{T}}{ds} = \frac{d}{ds} \langle \cos \varphi, \sin \varphi \rangle = \frac{d\varphi}{ds} \langle -\sin \varphi, \cos \varphi \rangle.$$

Both magnitude and direction of $\frac{d\mathbf{T}}{ds}$ are useful:

Curvature =
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \left| \frac{d\varphi}{ds} \right|$$
.

Direction =
$$\mathbf{N}$$
 = unit normal = $\langle -\sin\varphi, \cos\varphi \rangle \perp \mathbf{T}$.

Note: the book doesn't use the absolute value in its definition of κ , but it's more standard to include it.

Example: Circle $\mathbf{r}(t) = b(\cos t \mathbf{i} + \sin t \mathbf{j})$

$$\mathbf{r}'(t) = b(-\sin t \,\mathbf{i} + \cos t \,\mathbf{j})$$

$$\Rightarrow$$
 $|\mathbf{v}| = \frac{ds}{dt} = |\mathbf{r}'(t)| = b \text{ and } \varphi = t + \pi/2$

$$\Rightarrow \frac{d\varphi}{ds} = \frac{d\varphi}{dt} \cdot \frac{dt}{ds} = \frac{d\varphi/dt}{ds/dt} = \frac{1}{h}$$

 $\Rightarrow |\mathbf{v}| = \frac{ds}{dt} = |\mathbf{r}'(t)| = b \text{ and } \varphi = t + \pi/2$ $\Rightarrow \frac{d\varphi}{ds} = \frac{d\varphi}{dt} \cdot \frac{dt}{ds} = \frac{d\varphi/dt}{ds/dt} = \frac{1}{b}$ I.e. curvature of a circle = 1/radius (bigger circle = smaller curvature).

Using formula 4:
$$\mathbf{a} = -b(\cos t \, \mathbf{i} + \sin t \, \mathbf{j}) \implies \kappa = \frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^3} = b^2/b^3 = 1/b$$
.

(continued)

18.02A topic 22

Proofs of formulas 3-5:

Note: we will repeatedly use that $v = \frac{ds}{dt}$.

Formula 3 is an application of the product and chain rules:

Start with $\mathbf{v} = \frac{ds}{dt}\mathbf{T}$.

$$\Rightarrow \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{ds}{dt}\frac{d\mathbf{T}}{dt} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{ds}{dt}\frac{d\mathbf{T}}{ds}\frac{ds}{dt}$$
$$= \frac{d^2s}{dt^2}\mathbf{T} + \left(\frac{ds}{dt}\right)^2 \kappa \mathbf{N}.$$

In physics this is the decomposition of acceleration into tangential and radial components.

Formula 4 now follows from formula 3 since T and N are orthogonal unit vectors:

$$\mathbf{a} \times \mathbf{v} = \left(\frac{d^2s}{dt^2}\mathbf{T} + \left(\frac{ds}{dt}\right)^2 \kappa \mathbf{N}\right) \times \frac{ds}{dt}\mathbf{T} = \left(\frac{ds}{dt}\right)^3 \kappa (\mathbf{N} \times \mathbf{T}).$$

Since ${\bf N}$ and ${\bf T}$ are orthogonal unit vectors ${\bf N} \times {\bf T}$ is a unit vector

$$\Rightarrow |\mathbf{a} \times \mathbf{v}| = (\frac{ds}{dt})^3 \kappa = v^3 \kappa. \blacksquare$$

The second part of formula 4 is just the first in coordinates:

$$\mathbf{v} = x' \hat{\mathbf{i}} + y' \hat{\mathbf{j}}$$
 and $\mathbf{a} = x'' \hat{\mathbf{i}} + y'' \hat{\mathbf{j}}$

$$\Rightarrow$$
 $\mathbf{a} \times \mathbf{v} = (x''y' - x'y'')\hat{\mathbf{k}}$ and $v = \sqrt{(x')^2 + (y')^2}$

 \Rightarrow what we want.

Formula 5 now follows from what we just did. We found

$$\mathbf{a} \times \mathbf{v} = v^3 \kappa (\mathbf{N} \times \mathbf{T}). \Rightarrow \mathbf{v} \times (\mathbf{a} \times \mathbf{v}) = v^4 \kappa \mathbf{T} \times (\mathbf{N} \times \mathbf{T}) = v^4 \kappa \mathbf{N}.$$

The last equality is easy using your right hand (since T and N are orthogonal unit vectors).

Example: Find the curvature of the cycloid $\mathbf{r}(\theta) = a(\theta - \sin \theta) \hat{\mathbf{i}} + a(1 - \cos \theta) \hat{\mathbf{j}}$

$$\mathbf{v} = a(1 - \cos\theta)\hat{\mathbf{i}} + a\sin\theta\hat{\mathbf{j}}$$
 and $\mathbf{a} = a\sin\theta\hat{\mathbf{i}} + a\cos\theta\hat{\mathbf{j}}$.

$$\Rightarrow \mathbf{a} \times \mathbf{v} = a^2((1 - \cos \theta) \cos \theta - \sin \theta \sin \theta) \, \hat{\mathbf{k}} = a^2(\cos \theta - 1) \, \hat{\mathbf{k}} \quad \text{and} \quad v = a\sqrt{2(1 - \cos \theta)}$$

$$\Rightarrow \kappa = \frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^3} = \frac{a^2 (1 - \cos \theta)}{a^3 2^{3/2} (1 - \cos \theta)^{3/2}} = \frac{1}{a^{2^{3/2}} \sqrt{(1 - \cos \theta)}} = \frac{1}{4a |\sin(\theta/2)|}.$$

Example: Circle with different parameterization. $\mathbf{r}(t) = b(\cos t^2, \sin t^2)$

Since curvature is geometric it should be independent of parameterization. We'll use formula 4 to verify this in this example.

$$\mathbf{v} = \langle -2bt\sin t^2, 2bt\cos t^2 \rangle, \quad \mathbf{a} = \langle -2b\sin t^2 - 4bt^2\cos t^2, 2b\cos t^2 - 4bt^2\sin t^2 \rangle.$$

A little algebra \Rightarrow $\mathbf{a} \times \mathbf{v} = -8b^2t^3\mathbf{k}$ and $|\mathbf{v}| = 2bt \Rightarrow \kappa = \frac{8b^2t^3}{8b^3t^3} = \frac{1}{b}$. (same as before!).

(continued)

5 18.02A topic 22

These circle examples ($\kappa = 1/\text{radius}$) explains the following definition Radius of curvature = $\frac{1}{\kappa}$

The center of curvature and the osculating circle:

The osculating (kissing) circle is the best fitting circle to the curve.

Radius = radius of curvature.

Center along normal direction.

answer: We will use the formulas (2), (3) and (4),

$$\mathbf{v} = -\sin t \,\hat{\mathbf{i}} + \cos t \,\hat{\mathbf{j}} + a \,\hat{\mathbf{k}}; \quad \mathbf{a} = -\cos t \,\hat{\mathbf{i}} - \sin t \,\hat{\mathbf{j}}.$$

$$\Rightarrow$$
 $|\mathbf{v}| = \sqrt{1 + a^2}$; $\mathbf{a} \times \mathbf{v} = -a \sin t \,\hat{\mathbf{i}} + a \cos t \,\hat{\mathbf{j}} - \hat{\mathbf{k}}$.

Formula (4)
$$\Rightarrow \kappa = \frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^3} = \frac{\sqrt{1+a^2}}{(1+a^2)^{3/2}} = \frac{1}{1+a^2}.$$

$$\Rightarrow$$
 radius of convergence $= R = 1 + a^2$.

The center of curvature $C = \mathbf{r}(t) + R\mathbf{N} \implies$ we have to find $R\mathbf{N}$.

Since we already have $\mathbf{a} \times \mathbf{v}$ we *could* use formula (5).

Instead we note that
$$\frac{ds}{dt} = \sqrt{1 + a^2} \implies \frac{d^2s}{dt^2} = 0 \implies \mathbf{a} = \kappa (\frac{ds}{dt})^2 \mathbf{N}$$
.

But **a** is already a unit vector \Rightarrow **a** = **N**.

$$\Rightarrow R\mathbf{N} = -(1+a^2)(\cos t\,\hat{\mathbf{i}} + \sin t\,\hat{\mathbf{j}}).$$

$$\Rightarrow C = (\cos t, \sin t, t) - ((1 + a^2)\cos t, (1 + a^2)\sin t, 0)$$
$$= (-a^2\cos t, -a^2\sin t, t).$$

Example: For the parabola $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j}$ find \mathbf{v} , \mathbf{a} , \mathbf{T} , ds/dt, κ , R, \mathbf{N} and C for arbitrary t.

$$\mathbf{v} = \mathbf{i} + 2t\,\mathbf{j}, \quad \mathbf{a} = 2\mathbf{j}.$$

$$\Rightarrow ds/dt = |\mathbf{v}| = \sqrt{1 + 4t^2}, \quad \mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{1 + 4t^2}} \mathbf{i} + \frac{2t}{\sqrt{1 + 4t^2}} \mathbf{j}.$$

Formula 4:
$$\mathbf{a} \times \mathbf{v} = -2\mathbf{k}$$
. $\Rightarrow \kappa = \frac{2}{(1+4t^2)^{3/2}}$.

(Maximum curvature at t=0 as expected.)

$$R = 1/\kappa = \frac{(1+4t^2)^{3/2}}{2}$$
.

Formula 5:
$$\mathbf{v} \times (\mathbf{a} \times \mathbf{v}) = -4t \,\mathbf{i} + 2 \,\mathbf{j}$$
. $\Rightarrow \mathbf{N} = \frac{1}{2\sqrt{1+4t^2}}(-4t \,\mathbf{i} + 2 \,\mathbf{j})$.

Formula 6:
$$C = \mathbf{r} + R\mathbf{N} = (t\,\mathbf{i} + t^2\,\mathbf{j}) + \frac{1+4t^2}{4}(-4t\,\mathbf{i} + 2\,\mathbf{j}).$$

