18.02A Topic 23: Continuation, Kepler's second law. Read: SN: K

What I have here is just a bad version of the notes §K. I suggest you read that instead.

Claim: If a body moves under a central force then it sweeps out equal areas in equal time.

Proof:

Note a central force means $\overrightarrow{\mathbf{r}}$ is parallel to $\overrightarrow{\mathbf{a}}$.

In a short time Δt the position vector sweeps out an area ΔA .

Using vectors we see $\Delta A \approx \frac{1}{2} |\vec{\mathbf{r}} \times \Delta \vec{\mathbf{r}}|.$ $\Rightarrow \frac{dA}{dt} = \frac{1}{2} |\vec{\mathbf{r}} \times \frac{d\vec{\mathbf{r}}}{dt}|.$ Equal areas in equal time $\Leftrightarrow \frac{dA}{dt} = \text{constant.}$ Consider $\vec{\mathbf{w}} = \vec{\mathbf{r}} \times \frac{d\vec{\mathbf{r}}}{dt}.$ The product rule $\Rightarrow \frac{d\vec{\mathbf{w}}}{dt} = \frac{d\vec{\mathbf{r}}}{dt} \times \frac{d\vec{\mathbf{r}}}{dt} + \vec{\mathbf{r}} \times \frac{d^2\vec{\mathbf{r}}}{dt^2}$ $= \frac{d\vec{\mathbf{r}}}{dt} \times \frac{d\vec{\mathbf{r}}}{dt} + \vec{\mathbf{r}} \times \vec{\mathbf{a}}$ Both terms are 0 since $\vec{\mathbf{a}}$ is parallel to $\vec{\mathbf{r}}$.

$$\frac{d\vec{\mathbf{w}}}{dt} = 0 \Rightarrow \frac{dA}{dt} = \text{constant.} \blacksquare$$