18.02A Topic 24: Functions of several variables, partial derivatives.

Read: TB: 19.1
18.02A Topic 25: Tangent plane, level curves, contour surfaces.

Read: TB: 19.2 SN: TA
Examples: Functions of several variables
$f(x, y)=x^{2}+y^{2} \Rightarrow f(1,2)=5$ etc.
$f(x, y)=x y^{2} \mathrm{e}^{x+y}$
$f(x, y, z)=x y \log z$
Ideal gas law: $P=k T / V$

Dependent and independent variables

In $z=f(x, y)$ we say x, y are independent and z is dependent.
This indicates that x and y are free to take values and then z depends on these values.
For now it will be clear which are which, later we'll have to think more care.

Partial derivatives

$\frac{\partial f}{\partial x}$ differentiate with respect to x holding all other independent variables fixed -i.e. pretend they are constant.
Example: $f(x, y)=x^{2} y+y^{2}+x^{2}-3 \Rightarrow \frac{\partial f}{\partial x}=2 x y+2 x, \quad \frac{\partial f}{\partial y}=x^{2}+2 y$.
Notation: $z=f(x, y)$
$\frac{\partial f}{\partial x}=\frac{\partial z}{\partial x}=f_{x}=z_{x} .\left.\quad \frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=f_{x}\left(x_{0}, y_{0}\right)=\left.\frac{\partial f}{\partial x}\right|_{0}=z_{x}\left(x_{0}, y_{0}\right)$.
Example: $f(x, y)=x^{2} y+y^{2}+x^{2}-3 \Rightarrow \frac{\partial f}{\partial x}=2 x y+2 x,\left.\quad \frac{\partial f}{\partial x}\right|_{(1,2)}=2 \cdot 1 \cdot 2+2 \cdot 1=6$.

Graphs and level curves

$y=f(x): \quad 1$ independent variable, 1 dependent variable \Rightarrow need 2 dimensions to graph
Graphing technique:
go to x then compute $y=f(x)$ then go up to height y.
$z=f(x, y)$ is the same.
Example: $z=f(x, y)=a^{2} x^{2}+y^{2}$
Graph:
Go to (x, y)
compute $z=f(x, y)$
go up to height z
Level curve at height 3 :
Slice graph (surface) at height $z=3$ look down to $x-y$ plane
I.e. level curve is $z=3=a^{2} x^{2}+y^{2}$
i.e. level curve $=$ an ellipse in $x-y$ plane

Plot of level curves 'pulls out' to the 3 dimensional graph.
(continued)

Idea is same as for topographic maps

Mountain pass

Level curves

Contours:

Contours are the curves on the graph at a given height. They sit above the level curves.
Remember: level curves are in the plane, contours are on the graph.

Geometry:

Tangent plane -tangent to surface, must contain 2 tangent lines.

Theorem: (Assuming it's not vertical) the equation of the tangent plane is $z-z_{0}=$ $\left.\frac{\partial z}{\partial x}\right|_{0}\left(x-x_{0}\right)+\left.\frac{\partial z}{\partial y}\right|_{0}\left(y-y_{0}\right)$
proof: Two tangent lines $\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+t\left(\begin{array}{c}1 \\ 0 \\ z_{x}\left(x_{0}, y_{0}\right)\end{array}\right)$ and $\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+t\left(\begin{array}{c}1 \\ 0 \\ z_{y}\left(x_{0}, y_{0}\right)\end{array}\right)$
\Rightarrow Normal $\mathbf{N}=\left(1,0,\left.\frac{\partial z}{\partial x}\right|_{0}\right) \times\left(1,0,\left.\frac{\partial z}{\partial y}\right|_{0}\right)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & z_{x} \\ 1 & 0 & z_{y}\end{array}\right|=\left(-z_{x},-z_{y}, 1\right)$
\Rightarrow plane $=-z_{x} \cdot\left(x-x_{0}\right)-z_{y} \cdot\left(y-y_{0}\right)+\left(z-z_{0}\right)=0$

Approximation formula: Tangent plane approximates surface
$\Delta x=\left(x-x_{0}\right), \Delta y=\left(y-y_{0}\right), \Delta z=f(x, y)-f\left(x_{0}, y_{0}\right)$
$\left.\Delta z \approx \frac{\partial z}{\partial x}\right|_{0} \Delta x+\left.\frac{\partial z}{\partial y}\right|_{0} \Delta y$

Graph of $z=f(x, y)$.
Example: Suppose you have a box of dimensions 5, 10 and 15 cm . Use the tangent plane approximation formula to estimate the percentage change in volume if each of the dimensions is increased by 0.5 cm .
answer: Label the sides of the box, x, y, z.
\Rightarrow Volume $=V=x y z \Rightarrow \frac{\partial V}{\partial x}=y z ; \quad \frac{\partial V}{\partial y}=x z ; \quad \frac{\partial V}{\partial z}=z y$.
$\left.\Rightarrow \quad \frac{\partial V}{\partial x}\right|_{(5,10,15)}=150,\left.\quad \frac{\partial V}{\partial y}\right|_{(5,10,15)}=75,\left.\quad \frac{\partial V}{\partial z}\right|_{(5,10,15)}=50$.
$\Rightarrow \Delta V \approx 150 \Delta x+75 \Delta y+50 \Delta z$.
Thus, $\Delta x=\Delta y=\Delta z=0.5 \Rightarrow \Delta V \approx(150+75+50) \cdot 0.5=137.5$.
\Rightarrow Percentage change $=\Delta V / V=137.5 / 750=18.3 \%$.
In the example, volume is most sensitive to changes in which side?
answer: The side of length 5 since Δx has the biggest coefficient in the approximation formula.

