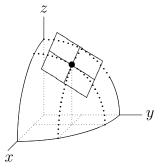
18.02A Topic 26: Tangent plane approximation, directional derivatives. Read: TB: 19.1, 19.2 SN: TA

From last time we have the tangent plane approximation.

$$\Delta x = (x - x_0), \ \Delta y = (y - y_0), \ \Delta w = f(x, y) - f(x_0, y_0)$$
$$\Delta w \approx \frac{\partial w}{\partial x} \Big|_0 \Delta x + \frac{\partial w}{\partial y} \Big|_0 \Delta y$$

The supplemental notes §TA give an analytic argument for this and its genaralization to 3 dimensions:

Suppose
$$w = f(x, y, z)$$
 and
 $\Delta x = (x - x_0), \ \Delta y = (y - y_0), \ \Delta z = (z - z_0)$ then
 $\Delta w = f(x, y) - f(x_0, y_0) \approx \frac{\partial w}{\partial x}\Big|_0 \Delta x + \frac{\partial w}{\partial y}\Big|_0 \Delta y + \frac{\partial w}{\partial z}\Big|_0 \Delta z$



Gradient

= rate of change in $\hat{\mathbf{i}}$ direction, $\frac{\partial w}{\partial y}\Big|_0$ = rate of change in $\hat{\mathbf{j}}$ direction. $\left. \frac{\partial w}{\partial x} \right|_0$ $\left\langle \frac{\partial w}{\partial x} \Big|_{0}, \frac{\partial w}{\partial y} \Big|_{0} \right\rangle =$ **gradient** of $w = \nabla w$

To evaluate at P_0 we write $\nabla w(P_0)$. (Will use this in a moment.)

Directional derivative

Fix a direction $\widehat{\mathbf{u}}$ and a point P_0 in the *plane*.

The **directional derivative** of w at P_0 in the direction $\hat{\mathbf{u}}$ is defined as

$$\left. \frac{dw}{ds} \right|_{P_0,\widehat{\mathbf{u}}} = \lim_{\Delta s \to 0} \frac{\Delta w}{\Delta s}.$$

Here Δw is the change in w caused by a step of length Δs in the direction of $\hat{\mathbf{u}}$ (all in the *xy*-plane).

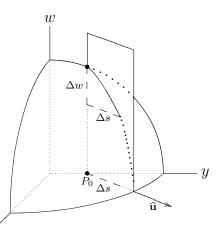
It is a fact that

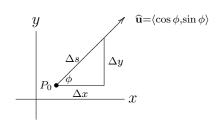
at:
$$\left| \frac{dw}{ds} \right|_{P_0, \widehat{\mathbf{u}}} = \nabla w(P_0) \cdot \widehat{\mathbf{u}}.$$

Proof: The tangent plane approximation and the bottom picture at right show

$$\frac{\Delta w}{\Delta s} \approx \left. \frac{\partial w}{\partial x} \right|_0 \left. \frac{\Delta x}{\Delta s} + \left. \frac{\partial w}{\partial y} \right|_0 \left. \frac{\Delta y}{\Delta s} \approx \left. \frac{\partial w}{\partial x} \right|_0 \cos \phi + \left. \frac{\partial w}{\partial y} \right|_0 \sin \phi$$

But $\widehat{\mathbf{u}} = \langle \cos \phi, \sin \phi \rangle$ since it is a unit vector. Thus, the last formula is just $\nabla w \cdot \hat{\mathbf{u}}$. In the limit the approximations become exact and we get the boxed equation. QED

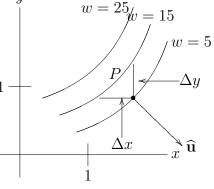




(continued)

Example: (Algebraic example) Let $w = x^3 + 3y^2$. Compute $\frac{dw}{ds}$ at $P_0 = (1, 2)$ in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{k}$. i) $\nabla w = \langle 3x^2 + 3y^2 \rangle \Rightarrow |\nabla w|_{(1,2)} = \langle 15, 12 \rangle = 15 \mathbf{i} + 12 \mathbf{j}$. ii) $\mathbf{\hat{u}} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3}{5} \mathbf{i} + \frac{4}{5} \mathbf{j}$. iii) $\frac{dw}{ds}\Big|_{P_0, \mathbf{\hat{u}}} = |\nabla w|_{(1,2)} \cdot \mathbf{\hat{u}} = (15 \mathbf{i} + 12 \mathbf{j}) \cdot (\frac{3}{4} \mathbf{i} + \frac{4}{5} \mathbf{j}) = \boxed{\frac{93}{5}}$.

Example: (Geometric example) Let $\hat{\mathbf{u}}$ be the direction of $\langle 1, -1 \rangle$. Using the picture at right estimate $\left. \frac{\partial w}{\partial x} \right|_{P}$, $\left. \frac{\partial w}{\partial y} \right|_{p}$, and $\left. \frac{dw}{ds} \right|_{P, \hat{\mathbf{u}}}$. By measuring from P to the next in level curve in the x direction we see that $\Delta x \approx -.5$. $\Rightarrow \left[\frac{\partial w}{\partial x} \right]_{P} \approx \frac{\Delta w}{\Delta x} \approx \frac{10}{-.5} = -20$. Similarly, we get $\left[\frac{\partial w}{\partial y} \right]_{P} \approx 20$.. Measuring in the \mathbf{u} direction we get $\Delta s \approx -.3$ $\Rightarrow \left[\frac{dw}{ds} \right]_{P, \hat{\mathbf{u}}} \approx \frac{\Delta w}{\Delta s} \approx \frac{10}{.3} = -33.3$.



y

Direction of maximum change: $\widehat{\mathbf{u}} = \frac{\nabla w}{|\nabla w|}$ (Proof: angle = 0).

The Gradient is perpendicular to level curves

 $\nabla w \perp$ level curve (surface) w = c.

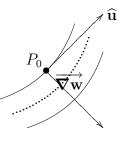
Example: Consider the graph of $y = e^x$. Find a vector perpindicular to the tangent to at the point (1, e).

Old method: Find the slope take the negative reciprocal and make the vector. New method: This graph is the level curve of $w = y - e^x$ with w = 0. $\nabla w = \langle -e^x, 1 \rangle \Rightarrow \text{normal} = \nabla w(1, e) = \langle -e, 1 \rangle.$

proof: If $\hat{\mathbf{u}}$ is tangent to the level curve at P_0 then $\left. \frac{dw}{ds} \right|_{P_0, \hat{\mathbf{u}}} = 0$

since w is constant along the level curve, i.e., $\left. \frac{dw}{ds} \right|_{P_0, \widehat{\mathbf{u}}} = \nabla w(P_0) \cdot \widehat{\mathbf{u}} = 0.$ QED

(continued)



Example: Find the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point P = (1, 1, 1).

Introduce a new variable $w = x^2 + 2y^2 + 3z^2 = 6$. Our surface is the level surface w = 6 \Rightarrow normal to surface is $\nabla w = \langle 2x, 4y, 6z \rangle$. At the point *P* we have $\nabla w|_P = \langle 2, 4, 6 \rangle$. Using point normal form the equation of the tangent plane is $2(x-1) + 4(y-1) + 6(z-1) = 0 \Leftrightarrow 2x + 4y + 6z = 12$.