18.02A Topic 26: Tangent plane approximation, directional derivatives.

Read: TB: 19.1, 19.2 SN: TA
From last time we have the tangent plane approximation.
$\Delta x=\left(x-x_{0}\right), \Delta y=\left(y-y_{0}\right), \Delta w=f(x, y)-f\left(x_{0}, y_{0}\right)$
$\left.\Delta w \approx \frac{\partial w}{\partial x}\right|_{0} \Delta x+\left.\frac{\partial w}{\partial y}\right|_{0} \Delta y$
The supplemental notes \S TA give an analytic argument for this and its genaralization to 3 dimensions:
Suppose $w=f(x, y, z)$ and
$\Delta x=\left(x-x_{0}\right), \Delta y=\left(y-y_{0}\right), \Delta z=\left(z-z_{0}\right)$ then
$\Delta w=f(x, y)-\left.f\left(x_{0}, y_{0}\right) \approx \frac{\partial w}{\partial x}\right|_{0} \Delta x+\left.\frac{\partial w}{\partial y}\right|_{0} \Delta y+\left.\frac{\partial w}{\partial z}\right|_{0} \Delta z$

Gradient
$\left.\frac{\partial w}{\partial x}\right|_{0}=$ rate of change in $\widehat{\mathbf{i}}$ direction, $\left.\quad \frac{\partial w}{\partial y}\right|_{0}=$ rate of change in $\widehat{\mathbf{j}}$ direction.
$\left\langle\left.\frac{\partial w}{\partial x}\right|_{0},\left.\frac{\partial w}{\partial y}\right|_{0}\right\rangle=$ gradient of $w=\boldsymbol{\nabla} w$
To evaluate at P_{0} we write $\boldsymbol{\nabla} w\left(P_{0}\right)$. (Will use this in a moment.)

Directional derivative

Fix a direction $\widehat{\mathbf{u}}$ and a point P_{0} in the plane.
The directional derivative of w at P_{0} in the direction $\widehat{\mathbf{u}}$ is defined as

$$
\left.\frac{d w}{d s}\right|_{P_{0}, \widehat{\mathbf{u}}}=\lim _{\Delta s \rightarrow 0} \frac{\Delta w}{\Delta s}
$$

Here Δw is the change in w caused by a step of length Δs in the direction of $\widehat{\mathbf{u}}$ (all in the $x y$-plane).
It is a fact that: $\left.\frac{d w}{d s}\right|_{P_{0}, \widehat{\mathbf{u}}}=\nabla w\left(P_{0}\right) \cdot \widehat{\mathbf{u}}$.

Proof: The tangent plane approximation and the bottom picture at right show
$\left.\frac{\Delta w}{\Delta s} \approx \frac{\partial w}{\partial x}\right|_{0} \frac{\Delta x}{\Delta s}+\left.\left.\frac{\partial w}{\partial y}\right|_{0} \frac{\Delta y}{\Delta s} \approx \frac{\partial w}{\partial x}\right|_{0} \cos \phi+\left.\frac{\partial w}{\partial y}\right|_{0} \sin \phi$
But $\widehat{\mathbf{u}}=\langle\cos \phi, \sin \phi\rangle$ since it is a unit vector. Thus, the last formula is just $\boldsymbol{\nabla} w \cdot \widehat{\mathbf{u}}$. In the limit the approximations become exact and we get the boxed equation. QED

Example: (Algebraic example) Let $w=x^{3}+3 y^{2}$.
Compute $\frac{d w}{d s}$ at $P_{0}=(1,2)$ in the direction of $\mathbf{v}=3 \mathbf{i}+4 \mathbf{k}$.
i) $\boldsymbol{\nabla} w=\left.\left\langle 3 x^{2}+3 y^{2}\right\rangle \Rightarrow \nabla \boldsymbol{\nabla}\right|_{(1,2)}=\langle 15,12\rangle=15 \mathbf{i}+12 \mathbf{j}$.
ii) $\widehat{\mathbf{u}}=\frac{\mathbf{v}}{\mid \mathbf{v}}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}$.
iii) $\left.\frac{d w}{d s}\right|_{P_{0}, \widehat{\mathbf{u}}}=\left.\nabla w\right|_{(1,2)} \cdot \widehat{\mathbf{u}}=(15 \mathbf{i}+12 \mathbf{j}) \cdot\left(\frac{3}{4} \mathbf{i}+\frac{4}{5} \mathbf{j}\right)=\frac{93}{5}$.

Example: (Geometric example) Let $\widehat{\mathbf{u}}$ be the direction of $\langle 1,-1\rangle$.
Using the picture at right estimate $\left.\frac{\partial w}{\partial x}\right|_{P},\left.\frac{\partial w}{\partial y}\right|_{p}$, and $\left.\frac{d w}{d s}\right|_{P, \widehat{\mathbf{u}}}$.
By measuring from P to the next in level curve in the
x direction we see that $\Delta x \approx-.5$.
$\left.\Rightarrow \quad \frac{\partial w}{\partial x}\right|_{P} \approx \frac{\Delta w}{\Delta x} \approx \frac{10}{-.5}=-20$.
Similarly, we get $\left.\frac{\partial w}{\partial y}\right|_{P} \approx 20$..
Measuring in the \mathbf{u} direction we get $\Delta s \approx-.3$
$\Rightarrow \quad\left|\frac{d w}{d s}\right|_{P, \widehat{\mathbf{u}}} \approx \frac{\Delta w}{\Delta s} \approx \frac{10}{.3}=-33.3$.

Direction of maximum change: $\quad \widehat{\mathbf{u}}=\frac{\boldsymbol{\nabla} w}{|\boldsymbol{\nabla} w|} \quad($ Proof: angle $=0)$.

The Gradient is perpendicular to level curves

$\nabla w \perp$ level curve (surface) $w=c$.
Example: Consider the graph of $y=\mathrm{e}^{x}$. Find a vector perpindicular to the tangent to at the point $(1, \mathrm{e})$.

Old method: Find the slope take the negative reciprocal and make the vector.
New method: This graph is the level curve of $w=y-\mathrm{e}^{x}$ with $w=0$.
$\nabla w=\left\langle-\mathrm{e}^{x}, 1\right\rangle \Rightarrow$ normal $=\nabla w(1, e)=\langle-\mathrm{e}, 1\rangle$.
proof: If $\widehat{\mathbf{u}}$ is tangent to the level curve at P_{0} then $\left.\frac{d w}{d s}\right|_{P_{0}, \widehat{\mathbf{u}}}=0$
since w is constant along the level curve, i.e., $\left.\frac{d w}{d s}\right|_{P_{0}, \widehat{\mathbf{u}}}=\nabla w\left(P_{0}\right) \cdot \widehat{\mathbf{u}}=0 . \quad$ QED
(continued)

Example: Find the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $P=(1,1,1)$.
Introduce a new variable $w=x^{2}+2 y^{2}+3 z^{2}=6$. Our surface is the level surface $w=6$ \Rightarrow normal to surface is $\boldsymbol{\nabla} w=\langle 2 x, 4 y, 6 z\rangle$. At the point P we have $\left.\boldsymbol{\nabla} w\right|_{P}=\langle 2,4,6\rangle$. Using point normal form the equation of the tangent plane is $2(x-1)+4(y-1)+$ $6(z-1)=0 \Leftrightarrow 2 x+4 y+6 z=12$.

