18.02A Topic 27: Chain rule.
Read: TB: 19.6

Tangent plane approximation formula:
\[w = f(x, y) \Rightarrow \Delta w \approx f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y. \]

Single variable approximation and chain rule:
Approximation formula for \(y = f(x) \):
\[\Delta y \approx \frac{dy}{dx} \Delta x. \]

If \(x \) is a function of \(t \) then divide the approximation formula by \(\Delta t \):
\[\frac{\Delta y}{\Delta t} = \frac{df}{dx} \frac{\Delta x}{\Delta t}. \]

In the limit this becomes the chain rule:
\[\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}. \]

Example: \(f(x) = x^3, \ x(t) = \sin t \Rightarrow f(x(t)) = \sin^3 t \Rightarrow \frac{df}{dt} = 3x^2 \cos t = 3\sin^2 t \cos t. \)

Multivariable functions:
Suppose \(w = f(x, y) \) and \(x = x(u, v), \ y = y(u, v). \)
Dependent variable = \(w \), independent variables = \(u, v \), intermediate variables = \(x, y \).

Multivariable chain rule:
Likewise we get the multivariable chain rule by, for example, holding \(\nu \) constant and dividing the tangent plane approximation formula by \(\Delta u \).

Approximation formula:
\[\Delta w = \frac{\partial w}{\partial x} \Delta x + \frac{\partial w}{\partial y} \Delta y \Rightarrow \frac{\Delta w}{\Delta u} = \frac{\partial w}{\partial x} \frac{\Delta x}{\Delta u} + \frac{\partial w}{\partial y} \frac{\Delta y}{\Delta u}. \]

Letting \(\Delta u \to 0 \) gives the chain rule for \(\frac{\partial w}{\partial u} \):
\[
\begin{align*}
\frac{\partial w}{\partial u} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u}, \\
\frac{\partial w}{\partial v} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v}.
\end{align*}
\]

Example: Given \(w = x^2y + y^2 + x, \ x = u^2v, \ y = uv^2 \) find \(\frac{\partial w}{\partial u} \).

\(\Rightarrow u, v \) independent, \(x, y \) intermediate, \(w \) dependent.
\[
\frac{\partial w}{\partial x} = 2xy + 1, \quad \frac{\partial w}{\partial y} = x^2 + 2y, \quad \frac{\partial x}{\partial u} = 2uv, \quad \frac{\partial y}{\partial u} = v^2, \quad \frac{\partial x}{\partial v} = u^2, \quad \frac{\partial y}{\partial v} = 2uv.
\]
\[
\Rightarrow \frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} = (2xy + 1)2uv + (x^2 + 2y)v^2(2uv + (u^4v^2 + uv^2))v^2 = 5u^4v^4 + 2uv + 2uv^4.
\]

Check: \(w = x^2y + y^2 + x = u^5v^4 + u^2v^4 + u^2v \Rightarrow \frac{\partial w}{\partial u} = 5u^4v^4 + 2uv^4 + 2uv.\)

(continues)
Special case example:

$$w = F(x, y, z) = x^2 + y^3 + z^4, \quad (x(t), y(t), z(t)) = (\cos t, t, \sin t).$$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt} = 2x \cdot (-\sin t) + 3y^2 \cdot 1 + 4z^3 \cdot \cos t.$$

(We leave it in this implicit ('mixed') form. It could be written out all in terms of t.)

Associated story: The temperature in space varies and is given by the function $T(x, y, z)$. An ant crawls along a wire whose shape is described by $r(t) = (x(t), y(t), z(t))$. What is the rate of change of temperature experienced by the ant. (You might not care but the ant certainly does.)

Answer:

$$\frac{dT}{dt} = \frac{\partial T}{\partial x} \frac{dx}{dt} + \frac{\partial T}{\partial y} \frac{dy}{dt} + \frac{\partial T}{\partial z} \frac{dz}{dt} = \nabla T \cdot \frac{dr}{dt}.$$

Theoretical example:

Suppose $w = f(x, y, z)$ and P_0 is on the level surface $w(x, y, z) = c$. Show $\nabla w(P_0)$ is perpendicular to the level surface.

Answer: Draw any curve on the surface $r(t) = (x(t), y(t), z(t))$ such the $r(0) = P_0$.

$$\Rightarrow w(t) = f(x(t), y(t), z(t)) = c$$

$$\Rightarrow \frac{dw}{dt} = 0 = \nabla w(P_0) \cdot r'(0)$$

$$\Rightarrow \nabla w(P_0)$$ is perpendicular to any curve on the surface through P_0. QED

Ambiguous notation

Often you have to figure out the dependent and independent variables from context. Thermodynamics is a big culprit here:

Variables: P, T, V, U, S. *Any* two can be taken to be independent and the others are functions of those two.

We will do more with this in the future.