18.02A Topic 27: Chain rule. Read: TB: 19.6

Tangent plane approximation formula:

w = f(x, y): $\Rightarrow \Delta w \approx f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y.$

Single variable approximation and chain rule:

Approximation formula for y = f(x): $\Delta y \approx \frac{dy}{dx} \Delta x$.

If x is a function of t then divide the approximation formula by $\Delta t \Rightarrow \frac{\Delta y}{\Delta t} = \frac{df}{dx} \frac{\Delta x}{\Delta t}$

In the limit this becomes the chain rule: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

Example: $f(x) = x^3$, $x(t) = \sin t \Rightarrow f(x(t)) = \sin^3 t \Rightarrow \frac{df}{dt} = 3x^2 \cos t = 3\sin^2 t \cos t$.

Multivariable functions:

Suppose w = f(x, y) and x = x(u, v), y = y(u, v). Dependent variable = w, independent variables = u, v, intermediate variables = x, y.

Multivariable chain rule

Likewise we get the multivariable chain rule by, for example, holding v constant and dividing the tangent plane approximation formula by Δu .

Approximation formula: $\Delta w = \frac{\partial w}{\partial x} \Delta x + \frac{\partial w}{\partial y} \Delta y \Rightarrow \frac{\Delta w}{\Delta u} = \frac{\partial w}{\partial x} \frac{\Delta x}{\Delta u} + \frac{\partial w}{\partial y} \frac{\Delta y}{\Delta u}$ Letting $\Delta u \to 0$ gives the chain rule for $\frac{\partial w}{\partial x}$:

$$\frac{\partial w}{\partial w} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y} \frac{\partial w}{\partial w} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y}$$

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial u}, \qquad \frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial v}$$

Example: Given $w = x^2y + y^2 + x$, $x = u^2v$, $y = uv^2$ find $\frac{\partial w}{\partial u}$. ($\Rightarrow u, v$ independent, x, y intermediate, w dependent.) $\frac{\partial w}{\partial x} = 2xy + 1$, $\frac{\partial w}{\partial y} = x^2 + 2y$, $\frac{\partial x}{\partial u} = 2uv$, $\frac{\partial y}{\partial u} = v^2$, $\frac{\partial x}{\partial v} = u^2$, $\frac{\partial y}{\partial v} = 2uv$. $\Rightarrow \frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u}$ $= (2xy + 1)2uv + (x^2 + 2y)v^2(2u^2v \cdot uv^2 + 1)2uv + (u^4v^2 + 2uv^2)v^2$ $= 5u^4v^4 + 2uv + 2uv^4$.

Check: $w = x^2y + y^2 + x = u^5v^4 + u^2v^4 + u^2v \implies \frac{\partial w}{\partial u} = 5u^4v^4 + 2uv^4 + 2uv$.

(continued)

Special case example:

 $w = F(x, y, z) = x^2 + y^3 + z^4, \quad (x(t), y(t), z(t)) = (\cos t, t, \sin t).$ $\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} = 2x \cdot (-\sin t) + 3y^2 \cdot 1 + 4z^3 \cdot \cos t.$

(We leave it in this implicit ('mixed') form. It could be written out all in terms of t.)

Associated story: The temperature in space varies and is given by the function T(x, y, z). An ant crawls along a wire whose shape is described by $\mathbf{r}(t) = (x(t), y(t), z(t))$. What is the rate of change of temperature experienced by the ant. (You might not care but the ant certainly does.)

Answer: $\frac{dT}{dt} = \frac{\partial T}{\partial x}\frac{dx}{dt} + \frac{\partial T}{\partial y}\frac{dy}{dt} + \frac{\partial T}{\partial z}\frac{dz}{dt} = \nabla T \cdot \frac{d\mathbf{r}}{dt}.$

Theoretical example:

Suppose w = f(x, y, z) and P_0 is on the level surface w(x, y, z) = c. Show $\nabla w(P_0)$ is perpendicular to the level surface.

Answer: Draw any curve on the surface $\mathbf{r}(t) = (x(t), y(t), z(t))$ such the $\mathbf{r}(0) = P_0$. $\Rightarrow w(t) = f(x(t), y(t), y(t)) = c$ $\frac{dw}{dt} = \mathbf{r}(t) - \mathbf{r}(t)$

$$\Rightarrow \frac{dw}{dt} = 0 = \nabla w(P_0) \cdot \mathbf{r}'(0)$$

 $\Rightarrow \nabla w(P_0)$ is perpendicular to any curve on the surface through P_0 . QED

Ambiguous notation

Often you have to figure out the dependent and independent variables from context. Thermodynamics is a big culprit here:

Variables: P, T, V, U, S. Any two can be taken to be independent and the others are functions of those two.

We will do more with this in the future.