18.02A Topic 28: Max-min problems, least squares.

Read: TB: 19.7, SN: LS
Standard calculus question:
Given $z=f(x, y)$ where are the (relative) maxima and minima?
Answer: At the points where $\boldsymbol{\nabla} f=\langle 0,0\rangle$.
I.e. $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$.

Critical points: Such points are called critical points.
Example: $z=x^{2}+y^{2}$
$\boldsymbol{\nabla} z=\langle 2 x, 2 y\rangle \Rightarrow$ only critical point is $(0,0)$.
Clearly a minimum.
Example: $\quad z=-x^{2}-y^{2}$
$\boldsymbol{\nabla} z=\langle-2 x,-2 y\rangle \Rightarrow$ only critical point is $(0,0)$.
Clearly a maximum.
Example: $z=y^{2}-x^{2}$
$\boldsymbol{\nabla} z=\langle-2 x, 2 y\rangle \Rightarrow$ only critical point is $(0,0)$.
Clearly neither maximum or minimum.
Critical point $=$ horizontal tangent plane
Equation of tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)\left(z_{0}=f\left(x_{0}, y_{0}\right)\right)$ is

$$
\left(z-z_{0}\right)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\left(y-y_{0}\right)
$$

At a critical point this becomes: $z-z_{0}=0=$ horizontal plane.
Example: Making a box.
Sides double thick, bottom triple thick, no top, volume $=3$.
What dimensions use the least amount of cardboard?
Area of one side $=y z$, two sides, double thick \Rightarrow cardboard used $=4 y z$.
Area front (and back) $=x z$, single thick \Rightarrow cardboard used $=2 x z$.
Area bottom $=x y$, triple thick \Rightarrow cardboard used $=3 x y$.
Total cardboard used $=w=4 y z+2 x z+3 x y$.
Volume $=3=x y z \Rightarrow z=\frac{3}{x y}$
$\Rightarrow w=\frac{12}{x}+\frac{6}{y}+3 x y$
Critical points: $w_{x}=-\frac{12}{x^{2}}+3 y=0, w_{y}=-\frac{6}{y^{2}}+3 x=0$
$w_{x}=0 \Rightarrow y=\frac{4}{x^{2}}$
$w_{y}=0 \Rightarrow-\frac{6}{16} x^{4}+3 x=0$
$\Rightarrow x=2, y=1, z=3 / 2$.
Clearly a minimum. (physically we know it must have a minimum somewhere, it can't be on the boundary (axes) because w is infinite there \Rightarrow only critical point must be a minimum.

Least squares You should read §LS in the notes.
Start with data points: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
Try to fit a line, $y=a x+b$, to the data.
The 'squared error sum' is $E(a, b)=\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$.
The least squares fit is the line that minimizes E.
To find the minimum we set $\frac{\partial E}{\partial a}=0$ and $\frac{\partial E}{\partial b}=0$.
$\frac{\partial E}{\partial a}=\sum-2 x_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)=2 \sum_{i} a x_{i}^{2}+b x_{i}-x_{i} y_{i}=0$.
$\frac{\partial E}{\partial b}=\sum-2 x_{i}\left(y_{i}-\left(a x_{i}+b\right)=2 \sum_{i} a x_{i}+b-y_{i}=0\right.$.
This gives the least squares equations for a line:

$$
\begin{aligned}
\Rightarrow a \sum_{i} x_{i}^{2}+b \sum_{i} x_{i} & =\sum_{i} x_{i} y_{i} \\
a \sum_{i} x_{i}+b n & =\sum y_{i}
\end{aligned}
$$

Example: Use least squares to fit a line to the following data: $(0,1),(2,1),(3,4)$.
answer: In our case, $\left(x_{1}, y_{1}\right)=(1,1),\left(x_{2}, y_{2}\right)=(2,1)$ and $\left(x_{3}, y_{3}\right)=(3,4)$.
$\Rightarrow \quad \sum x_{i}^{2}=13, \quad \sum x_{i}=5, \quad n=3, \quad \sum x_{i} y_{i}=14, \quad \sum y_{i}=6$.
$\Rightarrow 13 a+5 b=14 ; \quad 5 a+3 b=6 \Rightarrow a=6 / 7$ and $b=4 / 7$.
The least squares line has equation $y=\frac{6}{7} x+\frac{4}{7}$.
Example: For the same points as above, use least squares to fit a parabola.
answer: A parabola has the formula $y=a x^{2}+b x+c$.
Squared error $=E(a, b, c)=\sum\left(y_{i}-\left(a x_{i}^{2}+b x_{i}+c\right)\right)^{2}$.
The least squares fit minimizes $E \Rightarrow \frac{\partial E}{\partial a}=\frac{\partial E}{\partial b}=\frac{\partial E}{\partial c}=0$:

$$
\begin{aligned}
\Rightarrow \quad a \sum x_{i}^{4}+b \sum x_{i}^{3}+c \sum x_{i}^{2} & =\sum x_{i}^{2} y_{i} \\
a \sum x_{i}^{3}+b \sum x_{i}^{2}+c \sum x_{i} & =\sum x_{i} y_{i} \\
a \sum x_{i}^{2}+b \sum x_{i}+c n & =\sum y_{i}
\end{aligned}
$$

Plugging in our points:
$\sum x_{i}^{4}=97, \quad \sum x_{i}^{3}=35, \quad \sum x_{i}^{2}=13, \quad \sum x_{i}=5, \quad n=3$.
$\sum x_{i}^{2} y_{i}=40, \quad \sum x_{i} y_{i}=14, \quad \sum y_{i}=6$.

$$
\begin{aligned}
\Rightarrow \quad 97 a+35 b+13 c & =40 \\
35 a+13 b+5 c & =14 \\
13 a+5 b+3 c & =6 .
\end{aligned}
$$

Solving $\Rightarrow a=1, \quad b=-2, \quad c=1$.
The least squares parabola has equation $y=x^{2}-2 x+1$.

Least squares line and parabola

Note: for 3 points the fit is perfect.

