18.02A Topic 29: Second derivative test, Lagrange multipliers. Read: TB: 19.7, 19.8

Review: $\nabla w = 0 \Rightarrow$ critical point

Second derivative test for critical point (x_0, y_0) Let $(w_{xx})_0 = A$, $(w_{xy})_0 = B$, $(w_{yy})_0 = C$ If $AC - B^2 > 0$ then $A > 0 \Rightarrow$ minimum, $A < 0 \Rightarrow$ maximum. If $AC - B^2 < 0$ then saddle. If $AC - B^2 = 0$ then test fails.

Example: $w = x^3 - 3xy + y^3$ $w_x = 3x^2 - 3y, w_y = -3x + 3y^2 \Rightarrow \nabla w = \langle 3x^2 - 3y, -3x + 3y^2 \rangle$ Critical points: $3x^2 - 3y = 0 \Rightarrow y = x^2$. Substitute this into $-3x + 3y^2 = 0 \Rightarrow x^4 - x = 0 \Rightarrow x = 0, 1$ \Rightarrow critical points are (0, 0), (1, 1). $w_{xx} = 6x, w_{xy} = -3, w_{yy} = 6y \Rightarrow AC - B^2 = 36xy - 9$ $\Rightarrow (0, 0)$ is a saddle and (1, 1) is a minimum.

Reasoning: Second order approximation: (at (0, 0)) $w - w_0 \approx \frac{\partial w}{\partial x} \bigg|_0 x + \frac{\partial w}{\partial y} \bigg|_0 y + \frac{1}{2} \left| \frac{\partial^2 w}{\partial x^2} \right|_0 x^2 + \frac{\partial^2 w}{\partial x \partial y} \bigg|_0 xy + \frac{1}{2} \left| \frac{\partial^2 w}{\partial y^2} \right|_0 y^2.$ More simply: $\Delta w \approx (w_x)_0 x + (w_y)_0 y + \frac{1}{2} (w_{xx})_0 x^2 + (w_{xy})_0 x y + \frac{1}{2} (w_{yy})_0 y^2$. At a critical point this (since $w_x = 0, w_{xx} = A$ etc.) becomes $\Delta w = \frac{1}{2}(Ax^2 + 2Bxy + Cy^2).$ Complete square: $\Delta w = A(x + \frac{B}{4}y)^2 + \frac{1}{4}(AC - B^2)y^2$ So, if $AC - B^2 > 0$ and A > 0 then $\Delta w > 0 \Rightarrow$ minimum. If $AC - B^2 > 0$ and A < 0 then $\Delta w < 0 \Rightarrow$ maximum. If $AC - B^2 < 0$ then Δw varies \Rightarrow saddle. **Examples:** (Use these to remember the rules.) i) $z = x^2 + y^2$ (min. at (0,0)): A = 2, B = 0, C = 2 $\Rightarrow AC - B^2 = 4 > 0 \text{ and } A > 0.$ ii) $z = -(x^2 + y^2)$ (max. at (0,0)): A = -2, B = 0, C = -2 $\Rightarrow AC - B^2 = 4 > 0$ and A < 0. iii) $z = y^2 - x^2$ (saddle. at (0,0)): A = -2, B = 0, C = 2 $\Rightarrow AC - B^2 = -4 < 0.$ iv) z = xy (saddle. at (0,0)): $A = 0, B = 1, C = 0 \implies AC - B^2 = -1 < 0.$ General example: $z = \frac{1}{2}(ax^2 + 2bxy + cy^2)$ (crit. pt. at (0,0)): $A = a, B = b, C = c \implies AC - B^2 = ac - b^2 < 0.$

(continued)

Lagrange multipliers:

Problem: Minimize w = f(x, y, z) constrained by g(x, y, z) = c.

Sphere example:

Minimize w = y constrained to $x^2 + y^2 + z^2 = 1$.

Example: Box: No top, sides double thick, bottom triple thick, volume = 3.

What's the smallest amount of cardboard you can use?

Dimensions: x, y, z.

Cardboard: w = 4xz + 4yz + 3xy.

Constraint V = xyz = 3.

Lagrange solution: Critical point $\nabla f = \lambda \nabla g$, constraint g(x, y, z) = c.

Sphere example: $\nabla f = \langle 0, 1, 0 \rangle$, $\nabla g = \langle 2x, 2y, 2z \rangle$ $\nabla f = \lambda \nabla g \Rightarrow \langle 0, 1, 0 \rangle = \lambda \langle 2x, 2y, 2z \rangle \Rightarrow x = z = 0.$ Constraint $\Rightarrow y = \pm 1$. (Gives min and max).

Box example: $\nabla f = \langle 4z + 3y, 4z + 3x, 4x + 4y \rangle$, $\nabla V = \langle yz, xz, xy \rangle$ Lagrange: $\langle 4z + 3y, 4z + 3x, 4x + 4y \rangle = \lambda \langle yz, xz, xy \rangle$, xyz = 3Solve symmetrically: $\frac{4z+3y}{yz} = \lambda$ $\frac{4z+3x}{xz} = \lambda$, $\frac{4x+4y}{xy} = \lambda$, xyz = 3 $\Rightarrow \frac{4}{y} + \frac{3}{z} = \frac{4}{x} + \frac{3}{z} = \frac{4}{y} + \frac{4}{x}$ $\Rightarrow \frac{4}{y} = \frac{4}{x} \Rightarrow x = y$ and $\frac{3}{z} = \frac{4}{x} \Rightarrow z = \frac{3}{4}x$ $xyz = 3 \Rightarrow \frac{3}{4}x^3 = 3 \Rightarrow x = 4^{1/3}$ Answer: $x = 4^{1/3}$, $y = 4^{1/3}$, $z = 3 \cdot 4^{-2/3}$, $w = 9 \cdot 4^{2/3}$.

Reason for Lagrange (using two dimensional picture) Problem: minimize w = f(x, y) subject to constraint g(x, y) = c. Follow the level curves of f, the last one to touch g = c is the maximum (or minimum) and it is tangent \Rightarrow gradients are parallel.

Reason for Lagrange (using analysis)

Constaint g(x, y, z) = c is a level surface with normal ∇g . Suppose P_0 is a minimum for f on the surface. Let $\mathbf{r}(t)$ be any curve on the surface with $\mathbf{r}(0) = P_0$. $\Rightarrow h(t) = f(\mathbf{r}(t))$ has a minimum at t = 0. Taking a derivative: $h'(t) = \nabla f|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t)$.

- $\Rightarrow \ 0 = h'(0) = \mathbf{\nabla} f|_{P_0} \cdot \mathbf{r}'(0).$
- $\Rightarrow \nabla f|_{P_0}$ is perpendicular to any curve on the surface through P_0 .
- $\Rightarrow \nabla f|_{P_0}$ is perpendicular to the surface.
- $\Rightarrow \nabla f|_{P_0}$ is parallel to $\nabla g|_{P_0}$.

(continued)

Example: (checking the boundary)

A rectangle in the plane is placed in the first quadrant so that one corner Q is at the origin and the two sides adjacent to Q are on the axes. The corner P opposite Q is on the curve x + 2y = 1. Using Lagrange multipliers find for which point P the rectangle has maximum area. Say how you know this point gives the maximum.

answer: We need some names. Let g(x, y) = x + 2y = 1 = constraint and f(x, y) = xy = area.Gradients: $\nabla g = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}, \quad \nabla f = y\hat{\mathbf{i}} + x\hat{\mathbf{j}}.$ Lagrange multipliers: $\Rightarrow \quad y = \lambda$ $x = 2\lambda$ x + 2y = 1The first two equations $\Rightarrow \quad x = 2y;$ Combine this with the third equation $\Rightarrow \quad 4y = 1.$ $\Rightarrow \quad y = 1/4, \quad x = 1/2 \Rightarrow P = (1/2, 1/4).$

We know this is a maximum because the maximum occurs either at a critical point or on the boundary. In this case the boundary points are on the axes which gives a rectangle with area = 0.

Example: (boundary at ∞)

A rectangle in the plane is placed in the first quadrant so that one corner Q is at the origin and the two sides adjacent to Q are on the axes. The corner P opposite Q is on the curve xy = 1. Using Lagrange multipliers find for which point P the rectangle has minimum perimeter. Say how you know this point gives the minimum.

<u>answer:</u> Let g(x, y) = xy = 1 = constraint and f(x, y) = 2x + 2y = perimeter. Gradients: $\nabla g = y \,\hat{\mathbf{i}} + x \,\hat{\mathbf{j}}$, $\nabla f = 2 \,\hat{\mathbf{i}} + 2 \,\hat{\mathbf{j}}$. Lagrange multipliers: $\Rightarrow 2 = \lambda y$ $2 = \lambda x$ xy = 1The first two equations $\Rightarrow x = y$; Combine this with the third equation $\Rightarrow x^2 = 1$. $\Rightarrow x = 1, x = 1 \Rightarrow P = (1, 1)$.

We know this is a minimum because the minimum occurs either at a critical point or on the boundary. In this case the boundary points are infinitely far out on the axes which gives a rectangle with perimeter $= \infty$.