18.02A Topic 29: Second derivative test, Lagrange multipliers.

Read: TB: 19.7, 19.8
Review: $\boldsymbol{\nabla} w=0 \Rightarrow$ critical point
Second derivative test for critical point $\left(x_{0}, y_{0}\right)$
Let $\left(w_{x x}\right)_{0}=A,\left(w_{x y}\right)_{0}=B,\left(w_{y y}\right)_{0}=C$
If $A C-B^{2}>0$ then $A>0 \Rightarrow$ minimum, $A<0 \Rightarrow$ maximum.
If $A C-B^{2}<0$ then saddle.
If $A C-B^{2}=0$ then test fails.
Example: $w=x^{3}-3 x y+y^{3}$
$w_{x}=3 x^{2}-3 y, w_{y}=-3 x+3 y^{2} \Rightarrow \nabla w=\left\langle 3 x^{2}-3 y,-3 x+3 y^{2}\right\rangle$
Critical points: $3 x^{2}-3 y=0 \Rightarrow y=x^{2}$.
Substitute this into $-3 x+3 y^{2}=0 \Rightarrow x^{4}-x=0 \Rightarrow x=0,1$
\Rightarrow critical points are $(0,0),(1,1)$.
$w_{x x}=6 x, w_{x y}=-3, w_{y y}=6 y \Rightarrow A C-B^{2}=36 x y-9$
$\Rightarrow(0,0)$ is a saddle and $(1,1)$ is a minimum.
Reasoning: Second order approximation: (at (0, 0))
$w-\left.w_{0} \approx \frac{\partial w}{\partial x}\right|_{0} x+\left.\frac{\partial w}{\partial y}\right|_{0} y+\left.\frac{1}{2} \frac{\partial^{2} w}{\partial x^{2}}\right|_{0} x^{2}+\left.\frac{\partial^{2} w}{\partial x \partial y}\right|_{0} x y+\left.\frac{1}{2} \frac{\partial^{2} w}{\partial y^{2}}\right|_{0} y^{2}$.
More simply: $\Delta w \approx\left(w_{x}\right)_{0} x+\left(w_{y}\right)_{0} y+\frac{1}{2}\left(w_{x x}\right)_{0} x^{2}+\left(w_{x y}\right)_{0} x y+\frac{1}{2}\left(w_{y y}\right)_{0} y^{2}$.
At a critical point this (since $w_{x}=0, w_{x x}=A$ etc.) becomes
$\Delta w=\frac{1}{2}\left(A x^{2}+2 B x y+C y^{2}\right)$.
Complete square: $\Delta w=A\left(x+\frac{B}{A} y\right)^{2}+\frac{1}{A}\left(A C-B^{2}\right) y^{2}$
So, if $A C-B^{2}>0$ and $A>0$ then $\Delta w>0 \Rightarrow$ minimum.
If $A C-B^{2}>0$ and $A<0$ then $\Delta w<0 \Rightarrow$ maximum.
If $A C-B^{2}<0$ then Δw varies \Rightarrow saddle.
Examples: (Use these to remember the rules.)
i) $z=x^{2}+y^{2}(\mathrm{~min}$. at $(0,0)): A=2, B=0, C=2$
$\Rightarrow A C-B^{2}=4>0$ and $A>0$.
ii) $z=-\left(x^{2}+y^{2}\right)(\max$. at $(0,0)): A=-2, B=0, C=-2$
$\Rightarrow A C-B^{2}=4>0$ and $A<0$.
iii) $z=y^{2}-x^{2}$ (saddle. at $\left.(0,0)\right): A=-2, B=0, C=2$
$\Rightarrow A C-B^{2}=-4<0$.
iv) $z=x y$ (saddle. at $(0,0)): A=0, B=1, C=0 \Rightarrow A C-B^{2}=-1<0$.

General example: $z=\frac{1}{2}\left(a x^{2}+2 b x y+c y^{2}\right)($ crit. pt. at $(0,0))$:
$A=a, B=b, C=c \Rightarrow A C-B^{2}=a c-b^{2}<0$.
(continued)

Lagrange multipliers:

Problem: Minimize $w=f(x, y, z)$ constrained by $g(x, y, z)=c$.

Sphere example:

Minimize $w=y$ constrained to $x^{2}+y^{2}+z^{2}=1$.
Example: Box: No top, sides double thick, bottom triple thick, volume $=3$.
What's the smallest amount of cardboard you can use?
Dimensions: x, y, z.
Cardboard: $w=4 x z+4 y z+3 x y$.
Constraint $V=x y z=3$.
Lagrange solution: Critical point $\boldsymbol{\nabla} f=\lambda \boldsymbol{\nabla} g$, constraint $g(x, y, z)=c$.
Sphere example: $\nabla f=\langle 0,1,0\rangle, \nabla g=\langle 2 x, 2 y, 2 z\rangle$
$\boldsymbol{\nabla} f=\lambda \boldsymbol{\nabla} g \Rightarrow\langle 0,1,0\rangle=\lambda\langle 2 x, 2 y, 2 z\rangle \Rightarrow x=z=0$.
Constraint $\Rightarrow y= \pm 1$. (Gives min and max).
Box example: $\boldsymbol{\nabla} f=\langle 4 z+3 y, 4 z+3 x, 4 x+4 y\rangle, \boldsymbol{\nabla} V=\langle y z, x z, x y\rangle$
Lagrange: $\langle 4 z+3 y, 4 z+3 x, 4 x+4 y\rangle=\lambda\langle y z, x z, x y\rangle, \quad x y z=3$
Solve symmetrically:
$\frac{4 z+3 y}{y z}=\lambda \quad \frac{4 z+3 x}{x z}=\lambda, \quad \frac{4 x+4 y}{x y}=\lambda, \quad x y z=3$
$\Rightarrow \frac{4}{y}+\frac{3}{z}=\frac{4}{x}+\frac{3}{z}=\frac{4}{y}+\frac{4}{x}$
$\Rightarrow \frac{4}{y}=\frac{4}{x} \Rightarrow x=y$ and $\frac{3}{z}=\frac{4}{x} \Rightarrow z=\frac{3}{4} x$
$x y z=3 \Rightarrow \frac{3}{4} x^{3}=3 \Rightarrow x=4^{1 / 3}$
Answer: $x=4^{1 / 3}, \quad y=4^{1 / 3}, \quad z=3 \cdot 4^{-2 / 3}, \quad w=9 \cdot 4^{2 / 3}$.
Reason for Lagrange (using two dimensional picture)
Problem: minimize $w=f(x, y)$ subject to constraint $g(x, y)=c$.
Follow the level curves of f, the last one to touch $g=c$ is the maximum (or minimum) and it is tangent \Rightarrow gradients are parallel.

Reason for Lagrange (using analysis)
Constaint $g(x, y, z)=c$ is a level surface with normal $\boldsymbol{\nabla} g$.
Suppose P_{0} is a minimum for f on the surface.
Let $\mathbf{r}(t)$ be any curve on the surface with $\mathbf{r}(0)=P_{0}$.
$\Rightarrow h(t)=f(\mathbf{r}(t))$ has a minimum at $t=0$.
Taking a derivative: $h^{\prime}(t)=\left.\boldsymbol{\nabla} f\right|_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t)$.
$\Rightarrow 0=h^{\prime}(0)=\left.\nabla f\right|_{P_{0}} \cdot \mathbf{r}^{\prime}(0)$.
$\left.\Rightarrow \nabla f\right|_{P_{0}}$ is perpendicular to any curve on the surface through P_{0}.
$\left.\Rightarrow \nabla f\right|_{P_{0}}$ is perpendicular to the surface.
$\left.\Rightarrow \nabla f\right|_{P_{0}}$ is parallel to $\left.\nabla g\right|_{P_{0}}$.
(continued)

Example: (checking the boundary)

A rectangle in the plane is placed in the first quadrant so that one corner Q is at the origin and the two sides adjacent to Q are on the axes. The corner P opposite Q is on the curve $x+2 y=1$. Using Lagrange multipliers find for which point P the rectangle has maximum area. Say how you know this point gives the maximum.
answer: We need some names.
Let $g(x, y)=x+2 y=1=$ constraint and $f(x, y)=x y=$ area.
Gradients: $\boldsymbol{\nabla} g=\widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}, \quad \nabla f=y \widehat{\mathbf{i}}+x \widehat{\mathbf{j}}$.
Lagrange multipliers: $\Rightarrow y=\lambda$
$x=2 \lambda$
$x+2 y=1$
The first two equations $\Rightarrow x=2 y$;
Combine this with the third equation $\Rightarrow 4 y=1$.

$\Rightarrow y=1 / 4, \quad x=1 / 2 \Rightarrow P=(1 / 2,1 / 4)$.
We know this is a maximum because the maximum occurs either at a critical point or on the boundary. In this case the boundary points are on the axes which gives a rectangle with area $=0$.
Example: (boundary at ∞)
A rectangle in the plane is placed in the first quadrant so that one corner Q is at the origin and the two sides adjacent to Q are on the axes. The corner P opposite Q is on the curve $x y=1$. Using Lagrange multipliers find for which point P the rectangle has minimum perimeter. Say how you know this point gives the minimum.
answer: Let $g(x, y)=x y=1=$ constraint and $f(x, y)=2 x+2 y=$ perimeter.
Gradients: $\boldsymbol{\nabla} g=y \widehat{\mathbf{i}}+x \widehat{\mathbf{j}}, \quad \nabla f=2 \widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}$.
Lagrange multipliers: $\Rightarrow 2=\lambda y$
$2=\lambda x$
$x y=1$
The first two equations $\Rightarrow x=y$;
Combine this with the third equation $\Rightarrow x^{2}=1$.
$\Rightarrow x=1, \quad x=1 \Rightarrow P=(1,1)$.

We know this is a minimum because the minimum occurs either at a critical point or on the boundary. In this case the boundary points are infinitely far out on the axes which gives a rectangle with perimeter $=\infty$.

