18.02A Topic 34: Applications of double integration.

Read: TB: 20.3

Center of Mass

$\begin{array}{cccc}\text { In one dimension: } & m_{1}=1 & m_{2}=1 & \\ & \bullet & x_{c m} & \bullet \\ x_{1} & & x_{2} \\ m_{1}=2 & m_{2}=1\end{array} \quad x_{c m}=\frac{x_{1}+x_{2}}{2}$.
In general, $x_{c m}=$ weighted average of position $=\frac{\sum m_{i} x_{i}}{\sum m_{i}}$.
For continuous density:

$$
\overline{\delta(x)} \quad b \quad M=\int_{a}^{b} \delta(x) d x, \quad x_{c m}=\frac{\int x d m}{M}=\frac{\int x \delta(x) d x}{\int \delta(x) d x} .
$$

In 2 dimensions:

$$
M=\iint_{R} \delta(x, y) d A, \quad x_{c m}=\iint_{R} x \delta(x, y) d A / M, \quad y_{c m}=\iint_{R} y \delta(x, y) d A / M
$$

Moment of inertia: $\quad I=\iint_{R} d^{2} d m=\iint_{R} d^{2} \delta(x, y) d A$.

About a point:

Example: $\delta=x y$; Find mass, center of mass and moment of inertia about O.
$M=\iint_{R} \delta d A=\int_{0}^{1} \int_{0}^{1} x y d x d y=\frac{1}{4}$.
$x_{c m}=\frac{1}{M} \iint x \delta d A=\frac{1}{M} \int_{0}^{1} \int_{0}^{1} x^{2} y d y d x$.
Inner (not including $\frac{1}{M}$): $\int_{0}^{1} x^{2} y d y=\left.\frac{x^{2} y^{2}}{2}\right|_{0} ^{1}=\frac{x^{2}}{2}$.

Outer: $\int_{0}^{1} \frac{x^{2}}{2} d x=\left.\frac{x^{3}}{6}\right|_{0} ^{1}=\frac{1}{6}$.
$\Rightarrow x_{c m}=\frac{4}{6}=\frac{2}{3}$. Symmetry $\Rightarrow y_{c m}=\frac{2}{3}$.
$I=\iint_{R} r^{2} \delta d A=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) x y d x d y=\frac{1}{4}$.

Example: Disk of radius a with center at $(a, 0), \quad \delta(x, y)=1$.
Find moment of inertia about O.
$I=\iint_{R} r^{2} \delta d A=\iint_{R} r^{2} d A$.
In polar coords: boundary circle $=r=2 a \cos \theta ; \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
Limits: $\theta:-\frac{\pi}{2}$ to $\frac{\pi}{2}$; fix $\theta \Rightarrow r: 0$ to $2 a \cos \theta$.
$\Rightarrow I=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 a \cos \theta} r^{2} r d r d \theta$.
Inner: $\left.\frac{r^{4}}{4}\right|_{0} ^{2 a \cos \theta}=4 a^{4} \cos ^{4} \theta$.
Outer:

$$
\begin{aligned}
\int_{-\pi / 2}^{\pi / 2} 4 a^{4} \cos ^{4} \theta d \theta & =a^{4} \int_{-\pi / 2}^{\pi / 2} \frac{3}{2}+2 \cos 2 \theta+\frac{1}{2} \cos 4 \theta \\
& =a^{4}\left(\frac{3}{2} \theta+\sin 2 \theta+\left.\frac{1}{8} \sin 4 \theta\right|_{-\pi / 2} ^{\pi / 2}\right. \\
& =a^{4} \frac{3}{2} \pi \\
& =M \frac{3}{2} a^{2}
\end{aligned}
$$

(Note: this agrees with the parallel axis theorem.)

Average Value

The average value of $f(x, y)$ with respect to area on a region R is $\frac{1}{\operatorname{area} R} \int_{R} f(x, y) d A$.
Example: What's the average distance of a point in a square from the center?
answer: We center the square on the origin. By symmetry this is the same as the average distance from the origin of the triangular region R shown in the picture. In polar coordinates the distance is r and the area of the triangle is $\frac{1}{2} \Rightarrow$ average distance $=\frac{1}{1 / 2} \int_{0}^{\pi / 4} \int_{0}^{\sec \theta} r r d r d \theta=2 \int_{0}^{\pi / 4} \frac{\sec ^{3} \theta}{3} d \theta=\frac{1}{3}(\sqrt{2}+\ln (\sqrt{2}+1))$.

Note: $x_{c m}$ is the average value of x with respect to mass.
The geometric center has coordinates given by the average value of x and y with respect to area, i.e., the center of mass when $\delta=1$.

