18.02A Topic 34: Applications of double integration.

Read: TB: 20.3

Center of Mass

$$m_1 = 2$$
 $m_2 = 1$ $x_{cm} = \frac{2x_1 + x_2}{3}$.

In general, x_{cm} = weighted average of position = $\frac{\sum m_i x_i}{\sum m_i}$.

For continuous density:

$$\frac{\delta(x)}{a} \qquad \qquad b \qquad M = \int_a^b \delta(x) \, dx, \quad x_{cm} = \frac{\int x \, dm}{M} = \frac{\int x \delta(x) \, dx}{\int \delta(x) \, dx}.$$

In 2 dimensions:

$$M = \int \int_{R} \delta(x, y) dA$$
, $x_{cm} = \int \int_{R} x \delta(x, y) dA/M$, $y_{cm} = \int \int_{R} y \delta(x, y) dA/M$

Moment of inertia: $I = \int \int_R d^2 dm = \int \int_R d^2 \delta(x,y) \, dA$.

About a point:

Example: $\delta = xy$; Find mass, center of mass and moment of inertia about O.

 $M = \iint_{R} \delta \, dA = \iint_{0}^{1} \int_{0}^{1} xy \, dx \, dy = \frac{1}{4}.$

$$x_{cm} = \frac{1}{M} \iint x \delta \, dA = \frac{1}{M} \int_0^1 \int_0^1 x^2 y \, dy \, dx.$$

Inner (not including $\frac{1}{M}$): $\int_0^1 x^2 y \, dy = \frac{x^2 y^2}{2} \Big|_0^1 = \frac{x^2}{2}$.

Outer:
$$\int_0^1 \frac{x^2}{2} dx = \frac{x^3}{6} \Big|_0^1 = \frac{1}{6}$$
.

$$\Rightarrow x_{cm} = \frac{4}{6} = \frac{2}{3}$$
. Symmetry $\Rightarrow y_{cm} = \frac{2}{3}$.

$$I = \int \int_{R} r^{2} \delta \, dA = \int_{0}^{1} \int_{0}^{1} (x^{2} + y^{2}) xy \, dx \, dy = \frac{1}{4}.$$

(continued)

18.02A topic 34

Example: Disk of radius a with center at (a, 0), $\delta(x, y) = 1$.

Find moment of inertia about O.

$$I = \int \int_R r^2 \delta \, dA = \int \int_R r^2 \, dA.$$

In polar coords: boundary circle $= r = 2a\cos\theta; -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Limits: θ : $-\frac{\pi}{2}$ to $\frac{\pi}{2}$; fix $\theta \Rightarrow r$: 0 to $2a\cos\theta$.

$$\Rightarrow I = \int_{-\pi/2}^{\pi/2} \int_0^{2a\cos\theta} r^2 r \, dr \, d\theta.$$

Inner:
$$\frac{r^4}{4}\Big|_0^{2a\cos\theta} = 4a^4\cos^4\theta$$
.

Outer:

$$\int_{-\pi/2}^{\pi/2} 4a^4 \cos^4 \theta \, d\theta = a^4 \int_{-\pi/2}^{\pi/2} \frac{3}{2} + 2 \cos 2\theta + \frac{1}{2} \cos 4\theta$$
$$= a^4 \left(\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8} \sin 4\theta \right)_{-\pi/2}^{\pi/2}$$
$$= a^4 \frac{3}{2}\pi$$
$$= M \frac{3}{2}a^2.$$

2

(Note: this agrees with the parallel axis theorem.)

Average Value

The average value of f(x, y) with respect to area on a region R is $\frac{1}{\text{area } R} \int \int_{R} f(x, y) \, dA$.

Example: What's the average distance of a point in a square from the center?

<u>answer:</u> We center the square on the origin. By symmetry this is the same as the average distance from the origin of the triangular region R shown in the picture. In polar coordinates the distance is r and the area of the triangle is $\frac{1}{2}$ \Rightarrow average

distance =
$$\frac{1}{1/2} \int_0^{\pi/4} \int_0^{\sec \theta} r \, r \, dr \, d\theta = 2 \int_0^{\pi/4} \frac{\sec^3 \theta}{3} \, d\theta = \frac{1}{3} (\sqrt{2} + \ln(\sqrt{2} + 1)).$$

Note: x_{cm} is the average value of x with respect to mass.

The geometric center has coordinates given by the average value of x and y with respect to area, i.e., the center of mass when $\delta = 1$.