
18.01A Topic 4: Definite integral; summation notation, first fund. theorem, prop-
erties.
Read: TB: 6.3 through formula (4); skip proofs; 6.4, 6.5, 6.6.

Definition: Definite integral = area between graph and x-axis.

I.e.
∫ b

a
f(x) dx =

x

y
y = f(x)

a b
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Examples:

∫ 1

0

x dx = x

y
�����������������

1
=

1

2
.

Dummy variables: The variable used in integration can be any letter.

⇒
∫ 1

0

x dx =

∫ 1

0

u du =

∫ 1

0

t dt.

Area below axis counts negative:∫ 0

−1

x dx =

��
��
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�

−1
= −1

2
.

∫ 1

−1

x dx =

�����������������

1

−1
= 0.

Summation notation:
We will be dealing with sums with many terms with a pattern.
Examples: 1. 1 + 2 + 3 + . . . + 999 + 1000.
2. 1 + 1/2 + 1/3 + · · ·+ 1/999 + 1/1000.
3. 1 + 2 + . . . + N .
The ellipsis indicates we didn’t write down every term. Often this is okay since we
can see the pattern. But, this is not always clear. One way to be fully specific and
to be more compact is summation notation.

Examples: 1.
1000∑
n=1

n = 1 + 2 + . . . + 1000.

(continued)
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18.01A topic 4 2

2.
1000∑
n=1

1/n = 1/1 + 1/2 + . . . + 1/1000.

3.
N∑

n=1

n = 1 + 2 + . . . + N .

The letter
∑

is the uppercase Greek letter sigma –for summation.

In the examples, the letter n is the index and the terms above and below the
∑

are

the limits.
1000∑
n=1

n2 is read as ’the sum from n = 1 to 1000 of n2’.

Example: Compute
5∑

j=2

j2.

answer: 22 + 32 + 42 + 52 = 54.

Example: Write 1 · 2 + 2 · 3 + 3 · 4 + . . . + 100 · 101 in summation notation.

answer:
100∑
k=1

k · (k + 1).

Example: Write the sum from k = 7 to 23 of sin(kπ/100) in summation notation.

answer:
23∑

k=7

sin(kπ/100).

Method of Exhaustion to compute

∫ b

a

f(x) dx:

(One of the main points of the class.)

Divide [a, b] into n equal intervals
⇒ each has width ∆x = b−a

n

Pick any ci in the i-th interval.
i-th rectangle:

base = ∆x, height = f(ci)
Area under curve:
≈ sum of area of rectangles
=

∑n
1 f(ci)∆x

= (definition) Sn

= (definition) Riemann Sum .
t0
•
c1

a
t1
•
c2 t2

. . . •
cntn

b

As n →∞ the width ∆x → 0 and Sn →area =

∫ b

a

f(x) dx.

(continued)
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Theorem The above is independent of the choice of ci.

Typical choices are: left endpoints, right endpoints, midpoint, biggest value, smallest
value.
The Riemann sums are the called respectively the left, right, mid, upper and lower
Riemann sum.

Example:∫ 1

0

x dx ≈
n∑

i=1

(
i

n
) · 1

n
(Here ∆x =

1

n
, right endpt =

i

n
.)

=
1

n2

n∑
i=1

i =
1

n2
· n(n + 1)

2
=

1 + 1/n2

2
=

1

2
.

Simmons computes
∫

x dx,
∫

x2 dx,
∫

x4 dx.

The computation relies on formulas for
∑

i,
∑

i2,
∑

i4.

The definite integral is defined as an area. So far our only method of computing it
is to use the rather tiring ’method of exhaustion’. There must be an easier way to
compute integrals.

First Fundamental Theorem of Calculus:
If f(x) is continuous and F ′(x) = f(x) then∫ b

a

f(x) dx = F (b)− F (a) = (notation) F (x)|ba.

I.e. Finding area ⇔ finding an anti-derivative. This is a BIG idea.

Note: When you see something called the ’Fundamental Theorem’ you should assume
it’s important. In this case, it warrants a lot of attention and three proofs.

Examples:

1.
∫ 1

0
x3 dx = x4

4

∣∣∣1
0

= 1
4

(draw your own picture).

2.
∫ π/a

0
sin ax dx = − 1

a
cos ax

∣∣π/a

0
= 2

a
. (Note the picture shows the integral is positive

–it’s easy to mess up signs.)

3.
∫ 2π

0
sin x dx = − cos x|2π

0 = 0.

x

y

• •
π/a

y = sin ax

x

y

• •• •
π 2π

y = sin x

(continued)
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4.
∫ 2

1
1
x
dx = ln x|21 = ln 2.

5. Given a rod of length 2 m with density δ(x) = 2 − (x − 1)2 g/m, find the total
mass of the rod.

answer: Divide the rod into small segments of length ∆x.

The mass of the ith segment = ∆mi ≈ δ(ci) ∆x.

⇒ Total mass =
∑

∆mi ≈
∑

δ(ci) ∆x.

In the limit the approximations are exact and the sum becomes an integral:

⇒ total mass =
∫ 2

0
δ(x) dx =

∫ 2

0
2− (x− 1)2 dx = 2x− (x− 1)3/3|20 = 4− 2/3.

x00 =

•
c1

x1

•
c2

x2

•
c3 . . . •

cn
xn= 2

An important convention: So far we’ve always had a < b, the following will be
quite useful.∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Properties of definite integrals

1.

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx.

2.

∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ b

a

f(x) dx.

3.

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

4.

∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

(All follow from the definition of integral as area.)

Example:∫ 2

1
3x3 + 4x dx = 3

∫ 2

1
x3 dx + 4

∫ 2

1
x dx

= 3x4/4|21 + 4x2/2|21
= 171

4
.

Example: (of property 2)∫ 1

−1
x3 dx =

∫ 0

−1
x3 dx +

∫ 1

0
x2 dx

= x4/4|0−1 + x4/4|10
= −1/4 + 1/4 = 0.

(continued)
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Example: (of property 2)∫ 1

−1
|x| dx =

∫ 0

−1
|x| dx +

∫ 1

0
|x| dx

=
∫ 0

−1
−x dx +

∫ 1

0
x dx

= −x2/2|0−1 + x2/2|10
= 1/2 + 1/2 = 1.

Example: (of property 4)∫ 1

−1
x3 dx = x4/4|1−1 = 0.∫ 1

−1
|x3| dx =

∫ 0

−1
−x3 dx +

∫ 1

0
x3 dx = 2/3.

⇒
∣∣∣∫ 1

−1
x3 dx

∣∣∣ ≤ ∫ 1

−1
|x3| dx.

For each of these examples you should be able to draw a picture and understand the
algebraic manipulations in terms of areas.

Here are 3 promised proofs. I will not mention the MVT version again.

proof 1: (speed and distance)
Suppose position = F (t).
⇒ speed = F ′(t) = f(t), net distance traveled = F (b)− F (a).
Divide [a, b] into n equal intervals, choose ci as above.
Distance traveled in i-th interval = ∆si ≈ f(ci)∆t.

t0a =

•
c1

t1

•
c2

t2

•
c3 . . . •

cn
tn= b

Net distance = ∆s1 + ∆s2 + . . . + ∆sn =
n∑

i=1

∆si ≈
n∑

i=1

f(ci)∆t.

As n →∞ this approximation becomes exact and becomes Net distance =
∫ b

a
f(t) dt

Therefore: net distance = F (b)− F (a) =
∫ b

a
f(t) dt. QED

proof 2: (Mean Value Theorem)

F (b)− F (a) =
n∑
1

F (ti)− F (ti−1)

=
∑

F ′(ci)(ti − ti−1), where ci is from the MVT

=
∑

f(ci)∆t.

As always, this sum →
∫ b

a

f(t) dt as ∆t → 0.

proof 3: See book §6.6


