18.01A Topic 5: Second fundamental theorem, $\ln x$ as an integral.

Read: SN: PI, FT.
First Fundamental Theorem: $F^{\prime}=f \Rightarrow \int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}$
Questions: 1. Why $d x$? 2. Given $f(x)$ does $F(x)$ always exist?

Answer to question 1.

a) Riemann sum: Area $\approx \sum_{1}^{n} f\left(c_{i}\right) \Delta x \rightarrow \int_{a}^{b} f(x) d x$ In the limit the sum becomes an integral and the finite Δx becomes the infinitesimal $d x$.
b) The $d x$ helps with change of variable.

Example: Compute $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$.
Let $x=\sin u$.

$$
\frac{d x}{d u}=\cos u \Rightarrow d x=\cos u d u, \quad x=0 \Rightarrow u=0, \quad x=1 \Rightarrow u=\pi / 2
$$

Substituting: $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-\sin ^{2} u}} \cos u d u=\int_{0}^{\pi / 2} \frac{\cos u}{\cos u} d u=\int_{0}^{\pi / 2} d u=\pi / 2$.
Answer to question 2. Yes \rightarrow

Second Fundamental Theorem:

If f is continuous and $F(x)=\int_{a}^{x} f(u) d u$ then $F^{\prime}(x)=f(x)$.
I.e. f always has an anit-derivative.

This is subtle: we have defined a NEW function $F(x)$ using the definite integral.
Note we needed a dummy variable u for integration because x was already taken.
proof: Δ area $=\int_{x}^{x+\Delta x} f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{x+\Delta x} f(x) d x-\int_{0}^{x} f(x) d x \\
& =F(x+\Delta x)-F(x)=\Delta F
\end{aligned}
$$

But, also Δ area $\approx f(x) \Delta x \Rightarrow \Delta F \approx f(x) \Delta x$ or $\frac{\Delta F}{\Delta x} \approx f(x)$.
As $\Delta x \rightarrow 0$ this becomes exact: $\frac{d F}{d x}=f(x)$. QED
More subtlety: For any continuous function there is an anti-derivative. We might not know it in closed form but we can always write it as a definite integral with a variable limit. This is useful since Riemann sums let us compute it as accurately as we wish.
Examples: (Not elementary functions BUT they are functions.)
$F(x)=\int_{0}^{x} \mathrm{e}^{-t^{2}} d t$ statistics.
$\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln t} d t$ number theory.
$\mathrm{Si}(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$ optics.

Natural logarithm as a definite integral: $\ln x=\int_{1}^{x} \frac{1}{t} d t$.
We can use this definition of $\ln x$ to derive all the properties of $\ln x$. This is an important example of how to derive properties from functions defined as integrals.
Properties of $\ln x$:

1. $\ln 1=0$. (proof: obvious from definition)
2. $\ln (a b)=\ln a+\ln b$.
proof: (uses change of variable and properties of integrals)
$\ln (a b)=\int_{1}^{a b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a b} \frac{1}{t} d t$
For the second integral on the right let $a u=t$
$\Rightarrow a d u=d t, t=a \leftrightarrow u=1, t=a b \leftrightarrow u=b$
Thus $\ln (a b)=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{a u} a d u=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{u} d u=\ln a+\ln b$
3. $\ln x$ is increasing. (proof: derivative $=\frac{1}{x}>0$)
(Won't do the following in class.)
4. $\ln (1 / a)=-\ln a$. (proof: $0=\ln 1=\ln \left(a \cdot \frac{1}{a}\right)=\ln a+\ln (1 / a)$.)
5. $\ln x^{n}=n \ln x . \quad$ (proof: $\ln x^{n}=\ln (x \cdot x \cdot x \cdots x) \ldots$)
6. $\ln x \rightarrow \infty$ as $x \rightarrow \infty$. (proof: $\ln 2^{n}=n \ln 2 \rightarrow \infty$ and $\ln x$ is increasing)

More uses of the second fundamental theorem:

Example: Sketch graph of $F(x)=\int_{0}^{x} \frac{u^{5}-1}{1+u^{2}} d u$.
Critical points:

$$
\begin{aligned}
& F^{\prime}(x)=\frac{x^{5}-1}{1+x^{2}} . \\
& F^{\prime}(x)=0 \Rightarrow x=1 .
\end{aligned}
$$

Special values:

$$
F(0)=0
$$

Sign of $F^{\prime}(x)$

Example: 3D-8a) If $\int_{0}^{x} f(t) d t=2 x(\sin x+1)$ find $f(\pi / 2)$.
answer: $f(x)=$ derivative of integral $=\frac{d}{d x} 2 x(\sin x+1)=2(\sin x+1)+2 x(\cos x)$
$\Rightarrow f(\pi / 2)=4$.
Example: 3D-8b) If $\int_{0}^{x / 2} f(t) d t=2 x(\sin x+1)$ find $f(\pi / 2)$.
answer: Chain rule: Let $F(u)=\int_{0}^{u} f(t) d t$.
So $F^{\prime}(u)=f(u)$ and $\frac{d}{d x} F(x / 2)=F^{\prime}(x / 2) \frac{1}{2}=f(x / 2) \frac{1}{2}$.
But, $F(x / 2)=2 x(\sin x+1) \Rightarrow \frac{d}{d x} F(x / 2)=2(\sin x+1)+2 x(\cos x)=\frac{1}{2} f(x / 2)$.
So, let $x=\pi \Rightarrow \frac{1}{2} f(\pi / 2)=2+2 \pi(-1)=2-2 \pi \Rightarrow f(\pi / 2)=4-4 \pi$.

Example: 3D-11a) (change of variable):

Compute $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x$.
Substitute: $u \stackrel{x}{=} \ln x \Rightarrow d u=\frac{1}{x} d x, \quad x=1 \leftrightarrow u=0, \quad x=\mathrm{e} \leftrightarrow u=1$.
\Rightarrow integral $=\int_{0}^{1} \sqrt{u} d u=2 / 3$.
Example: 3D-11b) Compute $\int_{0}^{\pi} \frac{\sin x}{(2+\cos x)^{3}} d x$.
Substitute: $u=\cos x \Rightarrow d u=-\sin x d x, \quad x=0 \leftrightarrow u=1, \quad x=\pi \leftrightarrow u=-1$.
\Rightarrow integral $=\int_{1}^{-1}-\frac{1}{(2+u)^{3}} d u=\int_{-1}^{1} \frac{1}{(2+u)^{3}} d u=-\left.\frac{1}{2}(2+u)^{-2}\right|_{-1} ^{1}=4 / 9$.

