18.01A Topic 5: Second fundamental theorem, $\ln x$ as an integral. Read: SN: PI, FT.

First Fundamental Theorem: $F' = f \Rightarrow \int_a^b f(x) \, dx = F(x) \big|_a^b$

Questions: 1. Why dx? 2. Given f(x) does F(x) always exist?

Answer to question 1.

a) Riemann sum: Area $\approx \sum_{i=1}^{n} f(c_i) \Delta x \to \int_{a}^{b} f(x) dx$ In the limit the sum becomes an integral and the finite Δx becomes the infinitesimal dx.

b) The dx helps with change of variable.

Example: Compute $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.

Let
$$x = \sin u$$
.

 $\frac{dx}{du} = \cos u \Rightarrow dx = \cos u \, du, \quad x = 0 \Rightarrow u = 0, \quad x = 1 \Rightarrow u = \pi/2.$ Substituting: $\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \int_0^{\pi/2} \frac{1}{\sqrt{1-\sin^2 u}} \cos u \, du = \int_0^{\pi/2} \frac{\cos u}{\cos u} \, du = \int_0^{\pi/2} \frac{du}{du} = \pi/2.$

Answer to question 2. Yes \rightarrow

Second Fundamental Theorem:

If f is continuous and $F(x) = \int_{a}^{x} f(u) du$ then F'(x) = f(x). I.e. f always has an anit-derivative.

This is subtle: we have defined a NEW function F(x) using the definite integral. Note we needed a dummy variable u for integration because x was already taken.

proof:
$$\Delta \operatorname{area} = \int_{x}^{x+\Delta x} f(x) \, dx$$

$$= \int_{0}^{x+\Delta x} f(x) \, dx - \int_{0}^{x} f(x) \, dx$$

$$= F(x+\Delta x) - F(x) = \Delta F.$$

$$\Delta F$$

$$\Delta F$$

$$\Delta F$$

But, also $\Delta \text{area} \approx f(x) \Delta x \Rightarrow \Delta F \approx f(x) \Delta x$ or $\frac{\Delta F}{\Delta x} \approx f(x)$. As $\Delta x \to 0$ this becomes exact: $\frac{dF}{dx} = f(x)$. QED

More subtlety: For any continuous function there is an anti-derivative. We might not know it in closed form but we can always write it as a definite integral with a variable limit. This is useful since Riemann sums let us compute it as accurately as we wish.

Examples: (Not elementary functions BUT they are functions.) $F(x) = \int_0^x e^{-t^2} dt$ statistics. $\text{Li}(x) = \int_2^x \frac{1}{\ln t} dt$ number theory. $\text{Si}(x) = \int_0^x \sin(t^2) dt$ optics.

(continued)

Natural logarithm as a definite integral: $\ln x = \int_{-\infty}^{\infty} \frac{1}{t} dt$.

We can use this definition of $\ln x$ to derive all the properties of $\ln x$. This is an important example of how to derive properties from functions defined as integrals.

Properties of $\ln x$:

1. $\ln 1 = 0$. (proof: obvious from definition) 2. $\ln(ab) = \ln a + \ln b$. **proof**: (uses change of variable and properties of integrals) $\ln(ab) = \int_{1}^{ab} \frac{1}{t} dt = \int_{1}^{a} \frac{1}{t} dt + \int_{a}^{ab} \frac{1}{t} dt$ For the second integral on the right let au = t $\Rightarrow a \, du = dt, \ t = a \leftrightarrow u = 1, \ t = ab \leftrightarrow u = b$ Thus $\ln(ab) = \int_1^a \frac{1}{t} dt + \int_1^b \frac{1}{au} a \, du = \int_1^a \frac{1}{t} dt + \int_1^b \frac{1}{u} du = \ln a + \ln b$ 3. $\ln x$ is increasing. (proof: derivative $=\frac{1}{x} > 0$)

(Won't do the following in class.) 4. $\ln(1/a) = -\ln a$. (proof: $0 = \ln 1 = \ln(a \cdot \frac{1}{a}) = \ln a + \ln(1/a)$.)

5. $\ln x^n = n \ln x$. (proof: $\ln x^n = \ln(x \cdot x \cdot x \cdot x \cdot x) \dots$)

6. $\ln x \to \infty$ as $x \to \infty$. (proof: $\ln 2^n = n \ln 2 \to \infty$ and $\ln x$ is increasing)

More uses of the second fundamental theorem:

Example: Sketch graph of $F(x) = \int_0^x \frac{u^5 - 1}{1 + u^2} du$.

Critical points:

$$F'(x) = \frac{x^5 - 1}{1 + x^2}.$$

$$F'(x) = 0 \Rightarrow x = 1.$$
Special values:

$$F(0) = 0.$$
Sign of $F'(x)$

$$y$$

$$y$$

$$y$$

$$y$$

$$y$$

$$y$$

$$y$$

$$y$$

Example: 3D-8a) If $\int_0^x f(t) dt = 2x(\sin x + 1)$ find $f(\pi/2)$. **answer:** $f(x) = \text{derivative of integral} = \frac{d}{dx}2x(\sin x + 1) = 2(\sin x + 1) + 2x(\cos x)$ $\Rightarrow f(\pi/2) = 4.$

Example: 3D-8b) If $\int_0^{x/2} f(t) dt = 2x(\sin x + 1)$ find $f(\pi/2)$. **answer:** Chain rule: Let $F(u) = \int_0^u f(t) dt$. So F'(u) = f(u) and $\frac{d}{dx}F(x/2) = F'(x/2)\frac{1}{2} = f(x/2)\frac{1}{2}$. But, $F(x/2) = 2x(\sin x + 1) \Rightarrow \frac{d}{dx}F(x/2) = 2(\sin x + 1) + 2x(\cos x) = \frac{1}{2}f(x/2)$. So, let $x = \pi \Rightarrow \frac{1}{2}f(\pi/2) = 2 + 2\pi(-1) = 2 - 2\pi \Rightarrow f(\pi/2) = 4 - 4\pi$.

Example: 3D-11a) (change of variable): Compute $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} dx$. Substitute: $u = \ln x \Rightarrow du = \frac{1}{x} dx$, $x = 1 \leftrightarrow u = 0$, $x = e \leftrightarrow u = 1$. \Rightarrow integral = $\int_0^1 \sqrt{u} \, du = 2/3.$ **Example:** 3D-11b) Compute $\int_0^{\pi} \frac{\sin x}{(2+\cos x)^3} dx$. Substitute: $u = \cos x \Rightarrow du = -\sin x \, dx$, $x = 0 \leftrightarrow u = 1$, $x = \pi \leftrightarrow u = -1$. $\Rightarrow \text{ integral} = \int_1^{-1} -\frac{1}{(2+u)^3} \, du = \int_{-1}^1 \frac{1}{(2+u)^3} \, du = -\frac{1}{2}(2+u)^{-2}\Big|_{-1}^1 = 4/9.$