
18.01A Topic 5: Second fundamental theorem, ln x as an integral.
Read: SN: PI, FT.

First Fundamental Theorem: F ′ = f ⇒
∫ b

a
f(x) dx = F (x)|ba

Questions: 1. Why dx? 2. Given f(x) does F (x) always exist?

Answer to question 1.
a) Riemann sum: Area ≈

∑n
1 f(ci)∆x →

∫ b

a
f(x) dx

In the limit the sum becomes an integral and the finite
∆x becomes the infinitesimal dx.
b) The dx helps with change of variable. a b

Example: Compute
∫ 1

0
1√

1−x2 dx.

Let x = sin u.
dx
du

= cos u ⇒ dx = cos u du, x = 0 ⇒ u = 0, x = 1 ⇒ u = π/2.

Substituting:
∫ 1

0
1√

1−x2 dx =
∫ π/2

0
1√

1−sin2 u
cos u du =

∫ π/2

0
cos u
cos u

du =
∫ π/2

0
du = π/2.

Answer to question 2. Yes →
Second Fundamental Theorem:

If f is continuous and F (x) =

∫ x

a

f(u) du then F ′(x) = f(x).

I.e. f always has an anit-derivative.

This is subtle: we have defined a NEW function F (x) using the definite integral.
Note we needed a dummy variable u for integration because x was already taken.

proof : ∆area =

∫ x+∆x

x

f(x) dx

=

∫ x+∆x

0

f(x) dx−
∫ x

0

f(x) dx

= F (x + ∆x)− F (x) = ∆F. x x + ∆x

f(x)
��4

44

area = ∆Foo

But, also ∆area ≈ f(x) ∆x ⇒ ∆F ≈ f(x) ∆x or
∆F

∆x
≈ f(x).

As ∆x → 0 this becomes exact: dF
dx

= f(x). QED

More subtlety: For any continuous function there is an anti-derivative. We might not
know it in closed form but we can always write it as a definite integral with a variable
limit. This is useful since Riemann sums let us compute it as accurately as we wish.

Examples: (Not elementary functions BUT they are functions.)
F (x) =

∫ x

0
e−t2 dt statistics.

Li(x) =
∫ x

2
1

ln t
dt number theory.

Si(x) =
∫ x

0
sin(t2) dt optics.

(continued)
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Natural logarithm as a definite integral: ln x =

∫ x

1

1

t
dt.

We can use this definition of ln x to derive all the properties of ln x. This is an
important example of how to derive properties from functions defined as integrals.

Properties of lnx:
1. ln 1 = 0. (proof: obvious from definition)

2. ln(ab) = ln a + ln b.
proof : (uses change of variable and properties of integrals)

ln(ab) =
∫ ab

1
1
t
dt =

∫ a

1
1
t
dt +

∫ ab

a
1
t
dt

For the second integral on the right let au = t
⇒ a du = dt, t = a ↔ u = 1, t = ab ↔ u = b
Thus ln(ab) =

∫ a

1
1
t
dt +

∫ b

1
1
au

a du =
∫ a

1
1
t
dt +

∫ b

1
1
u

du = ln a + ln b

3. ln x is increasing. (proof: derivative = 1
x

> 0)

(Won’t do the following in class.)
4. ln(1/a) = − ln a. (proof: 0 = ln 1 = ln(a · 1

a
) = ln a + ln(1/a).)

5. ln xn = n ln x. (proof: ln xn = ln(x · x · x · · ·x) . . .)
6. ln x →∞ as x →∞. (proof: ln 2n = n ln 2 →∞ and ln x is increasing)

More uses of the second fundamental theorem:
Example: Sketch graph of F (x) =

∫ x

0
u5−1
1+u2 du.

Critical points:
F ′(x) = x5−1

1+x2 .
F ′(x) = 0 ⇒ x = 1.

Special values:
F (0) = 0.

x
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F ′ < 0 F ′ > 01

Sign of F ′(x)

x

y

1

y = F (x)

Example: 3D-8a) If
∫ x

0
f(t) dt = 2x(sin x + 1) find f(π/2).

answer: f(x) = derivative of integral = d
dx

2x(sin x + 1) = 2(sin x + 1) + 2x(cos x)
⇒ f(π/2) = 4.

Example: 3D-8b) If
∫ x/2

0
f(t) dt = 2x(sin x + 1) find f(π/2).

answer: Chain rule: Let F (u) =
∫ u

0
f(t) dt.

So F ′(u) = f(u) and d
dx

F (x/2) = F ′(x/2)1
2

= f(x/2)1
2
.

But, F (x/2) = 2x(sin x + 1) ⇒ d
dx

F (x/2) = 2(sin x + 1) + 2x(cos x) = 1
2
f(x/2).

So, let x = π ⇒ 1
2
f(π/2) = 2 + 2π(−1) = 2− 2π ⇒ f(π/2) = 4− 4π.

Example: 3D-11a) (change of variable):

Compute
∫ e

1

√
ln x
x

dx.
Substitute: u = ln x ⇒ du = 1

x
dx, x = 1 ↔ u = 0, x = e ↔ u = 1.

⇒ integral =
∫ 1

0

√
u du = 2/3.

Example: 3D-11b) Compute
∫ π

0
sin x

(2+cos x)3
dx.

Substitute: u = cos x ⇒ du = − sin x dx, x = 0 ↔ u = 1, x = π ↔ u = −1.

⇒ integral =
∫ −1

1
− 1

(2+u)3
du =

∫ 1

−1
1

(2+u)3
du = −1

2
(2 + u)−2

∣∣1
−1

= 4/9.


