18.01A Topic 6: Geometric applications: volumes, area, arclength.

Read: TB: 7.1-7.6 (7.4 to top of page 233, 7.5 lightly).

Idea:

1. Divide into little (infinitesimal) pieces, each of which is easy to compute.
2. Sum them up.

Area between curves

Examples: (won't do all in class)

1. Find the area between $y=x+2$ and $y=x^{2}$.
answer: Find points of intersection:
$x+2=x^{2} \Rightarrow x=-1,2$.
On top: $x+2$ above x^{2}.
Area $=\int_{-1}^{2}(x+2)-x^{2} d x=9 / 2$.

2. Find the area between curves $y=x^{3}$ and $y=$ $4 x$.
Intersect at $x=-2,0,2$.
Two pieces: $\int_{-2}^{0} x^{3}-4 x d x+\int_{0}^{2} 4 x-x^{3} d x=8$.

3. Find the area between $y=1-x^{2}$ and $y=x+1$.

Intersection: $1-x^{2}=x+1 \Rightarrow x=0,-1$.
On top: $1-x^{2}$ is above $x+1$.
Area $=\int_{-1}^{0}\left(1-x^{2}\right)-(x+1) d x=1 / 6$.

4. Find the area bounded by $y=\cos x, y=\sin 2 x$, between $0 \leq x \leq \pi / 2$.

Intersection: $\cos x=\sin 2 x=2 \sin x \cos x$
$\Rightarrow \cos x=0$ or $2 \sin x=1 \Rightarrow x=\pi / 2, \pi / 6$.
In $[0, \pi / 6] \cos x$ is on top.
In $[\pi / 6, \pi / 2] \sin 2 x$ is on top.

Area $=\int_{0}^{\pi / 6} \cos x-\sin 2 x+\int_{\pi / 6}^{\pi / 2} \sin 2 x-\cos x$
$=\sin x+\left.\frac{1}{2} \cos 2 x\right|_{0} ^{\pi / 6}+-\frac{1}{2} \cos 2 x-\left.\sin x\right|_{\pi / 6} ^{\pi / 2}$
$=\left(\frac{1}{2}-0+\frac{1}{4}-\frac{1}{2}\right)+\left(\frac{1}{2}-1+\frac{1}{4}+\frac{1}{2}\right)=\frac{1}{2}$.

Volume by Slices:

Example 1: Find the volume of the sphere of radius R.
Volume of slice: $d V=\pi r^{2} d x=\pi\left(R^{2}-x^{2}\right) d x$.
Volume $=$ 'sum' of slices:

$$
\begin{aligned}
V & =\int_{-R}^{R} \pi\left(R^{2}-x^{2}\right) d x \\
& =\left.\pi\left(R^{2} x-x^{3} / 3\right)\right|_{-R} ^{R}=\frac{4}{3} \pi R^{3} .
\end{aligned}
$$

Volume of revolution:

Revolve graph of $y=f(x)$ around x-axis.
Compute volume by vertical slices.
Volume of slice: $d V=\pi y^{2} d x=\pi f(x)^{2} d x$
Volume $=$ 'sum' of slices:
$V=\int_{a}^{b} \pi f(x)^{2} d x$
Example 2: . Find the volume of revolution of the curve $y=4-x^{2}$ between 0 and 2 revolved around the x-axis.
Volume of slice: $d V=\pi y^{2} d x=\pi\left(4-x^{2}\right)^{2} d x$.
Volume $=$ 'sum' of slices:

$$
\begin{aligned}
V & =\int_{0}^{2} \pi 16-8 x^{2}+x^{4} d x \\
& =\left.\pi\left(16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right)\right|_{0} ^{2} \\
& =\pi(32-64 / 3+32 / 5) .
\end{aligned}
$$

Example 3: . Same curve around y-axis.
Volume of slice: $d V=\pi x^{2} d y=\pi(4-y) d y$.
Volume $=$ 'sum' of slices:

$$
V=\int_{0}^{4} \pi(4-y) d y=\left.\pi\left(4 y-y^{2} / 2\right)\right|_{0} ^{4}=8 \pi .
$$

The same ideas work for volumes of revolution around other lines.
Example 5: Find the volume of revolution of the curve
$y=4-x^{2}$ between $x=0$ and $x=2$ around the line $y=-1$.
answer: This is the same as example 2 above, except instead of rotating around the line $y=0$ (the x-axis) we rotate around $y=-1$.
The volume of a thin disk of rotation is
$d V=\pi r^{2} d x=\pi(y+1)^{2} d x=\pi\left(5-x^{2}\right)^{2} d x$.
Volume $=$ 'sum' of slices:

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(25-10 x^{2}+x^{4} d x\right. \\
& =\pi\left(25 x-\frac{10}{3} x^{3}+\left.\frac{1}{5} x^{5}\right|_{0} ^{2}\right. \\
& =\pi\left(50-\frac{80}{3}+\frac{32}{5}\right)
\end{aligned}
$$

Arclength

Δs is the length along the curve.
It's approximated by the secant line.
I.e. $\Delta s \approx \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$

In the limit: $d s=\sqrt{(d x)^{2}+(d y)^{2}}$
This is the basic formula. It can be manipulated.
E.g. $\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \quad$ or $\quad d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.

Arclength $=L=\int d s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
Example: Find the arclength of the curve $y^{2}=x^{3}$ between $(0,0)$ and $(4,8)$.
answer: $y=x^{3 / 2} \Rightarrow \frac{d y}{d x}=\frac{3}{2} x^{1 / 2} \Rightarrow \frac{d s}{d x}=\sqrt{1+\frac{9}{4} x}$.
\Rightarrow Arclength $=L=\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x=\left.\frac{8}{27}\left(1+\frac{9}{4} x\right)^{3 / 2}\right|_{0} ^{4}=\frac{8}{27}\left(10^{3 / 2}-1\right)$.
Example: Find the arclength of $y=\sin x$ for x in $[0, \pi]$.
answer: $\frac{d y}{d x}=\cos x \Rightarrow \frac{d s}{d x}=\sqrt{1+\cos ^{2} x}$.
\Rightarrow Arclength $=L=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x$.
(Not possible to evaluate in terms of elementary functions -called an elliptic integral.)

Surface area of revolution:

Trickier than volume.
Main idea: rotate line to get frustrum of cone: read the book §7.6.
For a curve $y=f(x)$ rotated around the x-axis the differential of area is $d A=2 \pi y d s=2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x$.
In general, for a element $d s$ rotated in a circle of radius r we get $d A=2 \pi r d s$.

Example: Find the area of the surface of revolution of $y=1 / x$ between 1 and b revolved around the x-axis.
answer: Find $d A$:
$y^{\prime}=-1 / x^{2}$.
$d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\sqrt{1+\left(-1 / x^{2}\right)^{2}} d x$.
$d A=2 \pi y d s=2 \pi \frac{1}{x} \sqrt{1+\left(-1 / x^{2}\right)^{2}} d x$.
\Rightarrow Surface area $A=\int_{1}^{b} 2 \pi \frac{1}{x} \sqrt{1+1 / x^{4}} d x$.
Hard to compute but we can analyze:

$$
\begin{aligned}
& A>\int_{1}^{b} 2 \pi \frac{1}{x} d x=2 \pi \ln b . \\
& \Rightarrow A \rightarrow \infty \text { as } b \rightarrow \infty
\end{aligned}
$$

Find the volume of revolution of the same curve.
Volume of slice $=d V=\pi y^{2} d x=\pi \frac{1}{x^{2}} d x$.
$\Rightarrow V=\int_{1}^{b} \frac{\pi}{x^{2}} d x=-\left.\frac{\pi}{x}\right|_{1} ^{b}=\pi\left(1-\frac{1}{b}\right)$.
$\Rightarrow V \rightarrow \pi$ as $b \rightarrow \infty$.

Finite volume and infinite surface area!
What happens if you fill the volume of revolution with paint?

