18.01A Topic 7: More applications: work, average value.

Read: TB: 7.7 to middle p. 247, SN: AV.
Average Value:
Definition: Average value of f over $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Idea: Ave $\approx \sum_{1}^{n} f\left(x_{i}\right) \frac{1}{n}=\frac{1}{b-a} \sum f\left(x_{i}\right) \frac{b-a}{n}=\frac{1}{b-a} \sum f\left(x_{i}\right) \Delta x \rightarrow \frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Examples:

1. Ave. val. of x on $[0,3]=\frac{1}{3} \int_{0}^{3} x d x=3 / 2$.

Ave. val. of x on $[5,10]=\frac{1}{5} \int_{5}^{10} x d x=15 / 2$.
2. Ave. val. of $\sin x$ on $[0, \pi]=\frac{1}{\pi} \int_{0}^{\pi} \sin x d x=2 / \pi$.

More idea:
Average value $=$ 'constant with the same integral'.

What you average over is important. The following is taken from the notes §AV.
Example: (This will be done at the end of class if there's time.)
A point is chosen at random on the x-axis between -1 and 1 ; call it P. What is the average length of the vertical line from P to the unit circle?
answer: Random on the x-axis means averaging over x.
If P is at x the line has length $\sqrt{1-x^{2}}$.

$$
\begin{aligned}
\Rightarrow \text { ave. length } & =\frac{1}{2} \int_{-1}^{1} \sqrt{1-x^{2}} d x \\
& =\frac{1}{2} \text { area of semicircle }=\frac{\pi}{4}
\end{aligned}
$$

Now take Q randomly on the circumference of the unit semicircle.
What is the average length of the vertical line from Q to the x-axis?
answer: Now we must average over θ.
For fixed θ the line has length $=\sin \theta \Rightarrow$ ave. length $=\frac{1}{\pi} \int_{0}^{\pi} \sin \theta d \theta=\frac{2}{\pi}$.
The two averages are different!

Work:

For constant force: work $=$ force time distance .
Units = energy: ft-lb, joule $=$ newton-meter, erg $=$ dyne-cm.
Hooke's law: For a spring $F=-k x$ where $F=$ force needed to compress or stretch a spring x units from equilibrium. k is the spring constant (the bigger k the stiffer the spring).
Gravitation: $F=\frac{G m M}{x^{2}}$ where F is the gravitational attraction of two masses m and M a distance x apart. G is the universal constant of gravitation.
(continued)

Examples:

1. A 100 ft long chain weighing $5 \mathrm{lb} / \mathrm{ft}$ hangs off a building. How much work is expended to haul it up to the roof?
Mass of little segment $=\Delta m=5 \Delta x$.
$x=$ distance from roof to little segment.
Work to haul a little segment of chain to the roof:
$\Delta W=x \Delta m=5 \Delta x$
Total work $W \approx \sum \Delta W=\sum 5 x \Delta x$.
Letting Δx go to 0 this becomes an integral:
$W=\int_{0}^{100} 5 x d x=25,000$ lb-feet.
Alternate method: $\Delta W=$ work to move all of chain still hanging a little way.
$x=$ length of chain already hauled in.
Mass of remaining chain $=5(100-x)$.
$\Delta W=5(100-x) d x$.
$W=\int_{0}^{100} 5(100-x) d x=25,000 \mathrm{lb}$-feet.

2. A spring has natural length 10 in ., 12 lb . of force stretches it $1 / 2 \mathrm{in}$.

Find the work done in stretching it from 10 to 18 in.
answer: First find $k: 12 \mathrm{lb}=k \cdot \frac{1}{2} \mathrm{in} . \Rightarrow k=24 \mathrm{lb} / \mathrm{in}$.
Work done stretching it from x to $x+\Delta x$ is $\Delta W \approx k x \Delta x$.
Total work $W=\sum \Delta W \approx \sum k x \Delta x$.
Letting $\Delta x \rightarrow 0$:
$W=\int_{10}^{18} 24 x d x=\left.12 x^{2}\right|_{10} ^{18}=2688 \mathrm{lb}-\mathrm{in}=224 \mathrm{lb}-\mathrm{ft}$.
(Note: always be careful with units.)
Example: (Average Value)
Given a harp as shown, what is the average length of a string?
Ave $=\sum f\left(c_{i}\right) \frac{1}{n}=\frac{1}{2} \sum f\left(c_{i}\right) \frac{2}{n} \approx \frac{1}{2} \int_{0}^{2} f(x) d x=8 / 3$.
Inverse kind of problem: use integral to approximate finite sum.

Example: (Gravitation)

How much work is done in moving a mass m from the surface of the planet to a height H ?
Work done going from h to $h+\Delta h=\Delta W \approx \frac{G m M}{R+h)^{2}} \Delta h$.
Total work $W=\sum \Delta W \approx \sum \frac{G m M}{(R+h)^{2}} \Delta h$.
Limit as $\Delta h \rightarrow 0$:

$$
W=\int_{0}^{H} \frac{G m M}{R+h)^{2}} d h=-\left.\frac{G m M}{R+h}\right|_{0} ^{H}=\operatorname{Gm} M\left(\frac{1}{R}-\frac{1}{R+H}\right)
$$

A high point of Western civilization!

