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Problem 1 (Source code for this problem attached as problem1.m, problem1.py, and mesh.py)
The construction of the mesh is as follows. At each mesh point (i, j), the differential equation

can be approximated by

ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j = (
1

1 + N
)2,

and we can construct an N2xN2 matrix MN where M(a−1)N+b,(c−1)N+d represents the coefficient of

uc,d in the equation centered at ua,b. Let bN be an N2-tall column vector with each entry 1
(N+1)2

.

For example,

M2 =









−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4

















u1,1

u1,2

u2,1

u2,2









=









1
9
1
9
1
9
1
9









,

We solve MNx = bN using software for N = 3, 7, 15, 31, 63 and extrapolate u(N+1

2
),(N+1

2
) four

times to get, to 10 digits, -0.07367135327. (Both MATLAB and SciPy give the same digits.)

Problem 2

We first define a few terms. Let

Mn =

















xn−1 −
cn−1

cn
− cn−1

cn
. . . . . . − c0

cn

1 xn−2 0 . . . 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 x0

















,

and fn(x) = det(xIn − Mn). We will prove that fn(x) = 1
cn

Pn(x), where

Pn(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + . . . + cn(x − x0) . . . (x − xn−1),

and that therefore the eigenvalues of Mn are the roots of Pn(x) (requirement (a)). Note also that
Mn is in upper Hessenberg form (requirement (b)) and that each entry of the matrix can be com-
puted by simple arithmetic on the {ci} and {xi} (requirement (c)).

Conjecture. Mn is the companion matrix to Pn. That is,

fn(x) = 1
cn

Pn(x).
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Proof. By induction. Our anchor is at n = 2.

f2(x) = det

(

x − x1 + c1
c2

c0
c2

−1 x − x0

)

= (x − x1 +
c1

c2
)(x − x0) − (

c0

c2
)(−1)

= (x − x1)(x − x0) +
c1

c2
(x − x0) +

c0

c2
=

1

c2
P2(x)

Now we must show that fn−1(x) = 1
cn−1

Pn−1(x) ⇒ fn(x) = 1
cn

Pn(x). Consider fn:

fn = det

















x − xn−1 + cn−1

cn

cn−1

cn
. . . . . . c0

cn

−1 x − xn−2 0 . . . 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 −1 x − x0

















We expand the determinant around the terms at (1, 1) and (2, 1).

fn =

(

(x − xn−1) +
cn−1

cn

)

det



















x − xn−2 0 . . . . . . 0

−1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 x − x0



















− (−1) det

















0 + cn−2

cn
. . . . . . . . . c0

cn

−1 x − xn−3 0 . . . 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 −1 x − x0

















The determinant of the matrix on the left is simply
∏n−2

i=0 (x − xi). The matrix on the right
is, by assumption, simply fn−1(x) except with the (x − xn−1) term equal to 0, and an cn element
where the cn−1 element usually is. Thus,

fn = ((x − xn−1) +
cn−1

cn

)

n−2
∏

i=0

(x − xi) +

(

c0

cn

+
c1

cn

(x − x0) + . . . +
cn−2

cn

(x − x0) . . . (x − xn−3)

)

= (x − xn−1) . . . (x − x0) +
cn−1

cn

(x − xn−2) . . . (x − x0) + . . . +
c1

cn

(x − x0) +
c0

cn

=
1

cn

Pn(x),

which is what we wanted to show. �

Thus, Mn as defined above is the companion matrix for the Newton form polynomial Pn. As
an extra check on our solution, we note that when x0 = . . . = xn−1 = 0, then Mn reduces to the
companion matrix for c0 + c1x + . . . + cnxn given in the problem set statement.
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Problem 3 (Source code for this problem attached as problem3.py, problem3.m, and matlab-
eigenvalues.txt)

We define some terms. Let

Mn =



















a1 b1 0 . . . 0

b1 a2 b2
. . .

...

0 b2
. . .

. . . 0
...

. . .
. . . an−1 bn−1

0 . . . 0 bn−1 an



















,

where ai = 0, b2
i = i2

(2i−1)(2i+1) and fn(x) = det(xIn−Mn). We will prove that fn(x) = αnPn(x),
where

αn =
n
∏

i=1

n

2n − 1
,

and Pn(x) is the nth Legendre polynomial, which can be defined recursively by

Pn(x) = x
2n − 1

n
Pn−1(x) −

n − 1

n
Pn−2(x),

with P0 = 1 and P1 = x.

Conjecture.

fn(x) = αnPn(x).

Proof. By induction. Our anchors are at n = 1 and n = 2.

f1(x) = x = α1P1(x)

f2(x) = det

(

x − 1√
3

− 1√
3

x

)

= x2 −
1

3
=

2

3
P2(x) = α2P2(x)

Now we must show that fn−2(x) = αn−2Pn−2(x) and fn−1(x) = αn−1Pn−1(x) ⇒ fn(x) =
αnPn(x). Consider the relation between the determinants of a symmetric tridiagonal matrix given
in the statement of the problem. We know that

det(xIn − Mn) = (x − an)det(xIn−1 − Mn−1) − (−bn−1)
2det(xIn−2 − Mn−2).

If we set an = 0, and let b2
n−1 = (n−1)2

(2n−1)(2n−3) , we have

fn(x) = xfn−1(x) −
(n − 2)2

(2n − 1)(2n − 3)
fn−2(x)

fn(x) = xαn−1Pn−1(x) −
(n − 1)2

(2n − 1)(2n − 3)
αn−2Pn−2(x)

We extract an αn = n
2n−1αn−1 = n

2n−1
n−1
2n−3αn−2 term:

fn(x) = αn

(

x
2n − 1

n
Pn−1(x) −

(n − 1)2

(2n − 1)(2n − 3)

(2n − 1)

n

(2n − 3)

(n − 1)
Pn−2(x)

)

3



fn(x) = αn

(

x
2n − 1

n
Pn−1(x) −

n − 1

n
Pn−2(x)

)

,

and by the recursive definition of the Legendre polynomial,

fn(x) = αnPn(x),

which is what we wanted to show. �

Thus, the eigenvalues of M32 (with ai = 0 and b2
i = i2

(2i−1)(2i+1) ) are the roots of P32. After
numerically calculating and sorting the eigenvalues, we get the following list:

-0.99726386 -0.98561151 -0.96476226 -0.93490608
-0.89632116 -0.84936761 -0.7944838 -0.73218212
-0.66304427 -0.58771576 -0.50689991 -0.42135128
-0.3318686 -0.23928736 -0.14447196 -0.04830767
0.04830767 0.14447196 0.23928736 0.3318686
0.42135128 0.50689991 0.58771576 0.66304427
0.73218212 0.7944838 0.84936761 0.89632116
0.93490608 0.96476226 0.98561151 0.99726386

These eigenvalues are calculated using SciPy’s linalg.eig() function. As given, ∼ .239287 is in
fact one of the zeros. (For comparison’s sake, I’ve attached a printout of MATLAB’s output of the
eigenvalues.)

Problem 4 (Source code attached as problem4.py)
Let pN (x) = c0 + . . . + cNxN be the degree N minimax polynomial of sin(x) on [0, π

2 ], and let

ǫN = max0≤x≤π

2
| sin(x) − pN (x) | .

We want to find p7(x). We first note that by choosing seven points {xi} (with x0 = 0 and x8 = π
2 )

such that
sin(xi) − p7(xi) = (−1)ih, 0 ≤ i ≤ 8,

we can write nine equations in (c0, . . . , c8, h):

c0 + c1x0 + . . . c7x
7
0 + h = sin(x0)

c0 + c1x1 + . . . c7x
7
1 − h = sin(x1)

...

c0 + c1x8 + . . . c7x
7
8 + h = sin(x8)

These correspond to the matrix equation











1 . . . x7
0 1

1 . . . x7
1 −1

...
...

...
1 . . . x7

0 1





















c0
...
c7

h











=











sin(x0)
sin(x1)

...
sin(x8)










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We can solve this using software. Thus, given a set of seven points, we can obtain a seventh-
degree polynomial that misses sin(x) by h at each of the points. We intend to find the first 8 digits
of the {ci}. We make an initial guess {xi}, and then refine our guess (a better guess will result in
a lower ǫ7) until we have the required number of digits. The method of refining out initial guess is
as follows:

Given a set {xi} (and an h and {ci} derived from it), calculate ǫN , and also the point x′ at
which sin(x′) − (c0 + . . . + c7x

′7) = ǫN . Since the calculated value of h is typically smaller than
ǫN , if we move one of the xi to x′, we will eliminate this source of error. We decide to move the xi

closest to x′.
With this method in mind, and the initial guess {xi} = .2, .4, .6, .8, 1, 1.2, 1.4, we follow these

steps:

Step 1. Given {xi}, calculate {ci} to construct a polynomial p7(x).
Step 2. Calculate ǫ7, the maximum error between sin(x) and p7(x). Note where the error is

happening as x′.
Step 3. Move the closest xi to x′.
Step 4. Go back to Step 1, and repeat until the {ci} converge.

In less than twenty iterations, the process settles on (to as many digits as given by SciPy):





























x0

x1

x2

x3

x4

x5

x6

x7

x8





























=





























0
0.061204508077236347
0.23474608626153651
0.49251533428490585
0.79392758745194458
1.092861124015301
1.344620505292353
1.5121082344331855

π
2





























,





























c0

c1

c2

c3

c4

c5

c6

c7

h





























=





























−.0000000195367731583
1.00000155323

−.0000202292837008
−.166566787675

−.000239703970351
.00863920572651

−.000205700049894
−.000137323212602

.0000000195367731583





























Our calculated ǫ7 is .000000019536773532280449, which agrees with h to eight significant digits.
This is reassuring, because we know that by the definition of the minimax function, h = ǫ7. To
eight digits, our minimax function of degree 7 of sin(x) on [0, π

2 ] is

p7(x) = (−1.9536773 · 10−8) + (1.0000015)x + (−2.0229283 · 10−5)x2

+(−.16656678)x3 + (−2.3970397 · 10−4)x4 + (8.6392057 · 10−3)x5

+(−2.0570005 · 10−4)x6 + (−1.3732321 · 10−4)x7.

(As an afterthought, this is somewhat close to the seventh Taylor polynomial of sin(x), which is,
to eight digits, x − .16666666x3 + .0083333333x5 − 0.00019841269x7 . Well, more in the first terms
than in the latter ones.)
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