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Assignment 5
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Announcements

• The 8.321 midterm exam will take place in class on October 31 (Hallowe’en). It will
be an hour and a half exam.

Reading topics for this period

• Classical mechanics and canonical quantization; Schrödinger and Heisenberg “pic-
tures” of time evolution; two state systems; simple harmonic oscillator.

Reading Recommendations 5

• 8.321 lecture notes on time evolution in quantum mechanics (posted on the website),
classical Hamiltonian mechanics, and canonical quantization.

• Sakurai, §2.1 and 2.2 discussed the basics of time evolution including “pictures”.

• Review of classical mechanics (in addition to 8.321 posted lecture notes): Shankar, §,
especially §2.5-2.7.

• The basics of motion in a magnetic field are presented in Gottfried & Yan, §4.3, which
has been scanned and put on the 8.321 website.

• Two state systems are presented in Gottfried & Yan, §4.1, which has been scanned
and put on the 8.321 website.

• The harmonic oscillator is discussed in almost every textbook. Sakurai §2.7; Shankar
§7; and Gottfried & Yan §4.2.

Problem Set 5

Topics covered in the problems

• Motion of a charged particle in a magnetic field, and the importance of the vector
potential in quantum mechanics.
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• Motion in the Schrödinger and Heisenberg pictures.

• Time dependence of the density matrix.

1. Canonical Quantization in the Presence of Static Magnetic and Electric

Fields

This is an important subject that we will return to from time to time in 8.321 and
8.322. It also illustrates the power as well as the shortcomings of the canonical
quantization method. You may have studied the Hamiltonian formulation of this
motion in classical mechanics. In that case the first few sections of the problem are
review.

The classical equation of motion for a particle in constant electric and magnetic fields
is the Lorentz force law,

m
d2~x

dt2
= ~F = e ~E +

e

c
~̇x× ~B

(using Gaussian units). Remember that static fields can be described by φ and ~A,
the electrostatic and magnetic vector potentials,

~E = −~∇φ and ~B = ~∇× ~A

(a) Consider the Lagrangian

L =
1

2
m~̇x 2 +

e

c
~̇x · ~A(~x) − eφ(~x) (1)

What is the canonical momentum, ~p = ∂L/∂~̇x? Note that it is not m~̇x. Show
that the Euler Lagrange equations, d~p/dt = ∂L/∂~x, give the Lorentz force law.
You will have to remember that, although both ~A and φ have no explicit time
dependence, they depend implicitly on time via the argument ~x(t). Thus d

dt
~A =

(~̇x · ~∇) ~A. [You’ll also need some vector calculus identities, or the help of a text
like Jackson’s.]

(b) Find the Hamiltonian, H = ~̇x · ~p − L. Combining the results of parts (a) and
(b), it appears that the energy can be written as E = 1

2
m~̇x2 +eφ (an elementary

result since the magnetic field does no work). What is the conceptual difference
between H and E in classical mechanics?

(c) Quantize this system canonically: [xj , pk] = i~δjk, etc.. Then write the Schrödinger
equation in coordinate space.

(d) Show that ~A = −1

2
~x× ~B0 is a vector potential corresponding to a constant field

~B0. Substitute this into the Schrödinger equation (with φ = 0) to obtain

(

−
~

2

2m
~∇ 2 −

e

2mc
~L · ~B0 +

e2

8mc2
ρ2B2

0

)

ψ(~x) = Eψ(~x) (2)

Here ~L = ~x×~p and ρ = B̂0×~x is the radial coordinate in the plane perpendicular
to ~B0.
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Show that the magnetic moment of a charge e in an orbit with angular momen-
tum ~L is µ = e~L/2mc. (e~/2mc is the “Bohr magneton”) so the second term
in eq. (2) is the interaction of the magnetic field with the dipole moment of the
orbiting particle. [If you are unfamiliar with Gaussian units, you can find the
expression for the magnetic moment in Jackson’s book, for example.]

(e) Choose a coordinate system so ~B0 lies along the ẑ direction. Remember from
undergraduate quantum mechanics that pz and Lz commute with ~∇ 2, so the
energy eigenstates can be labeled by the eigenvalue of pz (~k) and eigenvalue of
Lz (M~).

Show that the Schrödinger equation for a particle in a magnetic field reduces to
a two dimensional harmonic oscillator with an energy offset due to M and k.
What are the energy eigenvalues?1

(f) Eq. (2) turns out not to be correct for an electron. The electron has another
contribution to its magnetic moment for which there is no classical analogue. The
contribution is proportional to its internal spin, ~S = 1

2
~~σ, a quantum variable

with no classical analog. Rewrite eq. (2) allowing for a contribution to the
magnetic moment proportional to ~S. The constant of proportionality, usually
denoted g, is called the gyromagnetic ratio. For the electron g is very close to
2. Assume g = 2. How does this affect the energies eigenvalues you found in the
previous part?

2. Time Evolution (Sakurai, §2, Problem 23)

A particle of mass m in one dimension is bound to a fixed center by an attractive
δ-function potential, V (x) = −λδ(x) (λ > 0). At t = 0 the potential is suddenly
switched off (that is V = 0 for t > 0). What is the energy of the particle when t > 0?
Find the wavefunction for t > 0 (be quantitative, but you may not be able to evaluate
an integral that appears).

3. Schrödinger versus Heisenberg

Consider a free particle moving in one dimension. The Hamiltonian is H = P 2/2m.

(a) What are XH(t) and PH(t)? (where the subscript H means “in the Heisenberg
picture”.)

(b) What is [XH(t),XH(0)]?

(c) Suppose the uncertainty in XH is measured in a certain state at t = 0. Call it
∆X2

H(0). What does the uncertainty relation tell you about ∆X2

H(t)?

(d) Consider the correlation function

C(t) = 〈ψ|XH (t)X0(0)|ψ〉

which arises when we study time dependent processes like the scattering of light.
Write an expression for C(t) in the Schrödinger picture. Evaluate C(t) in the
harmonic oscillator ground state.

1This result is even simpler than it looks because M = n1 − n2, where n1 and n2 are the usual number

of “oscillator quanta” in the x and y directions.
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4. Time Dependence of the Density Matrix

In lecture we discussed only the time dependence of pure states. Mixed states evolve
in time too. We defined an arbitrary density matrix by ρ =

∑

k pk|ψk〉〈ψk|.

(a) The time dependence of states in the Schrödinger picture induces a natural
definition of the time dependent density matrix in the Schrödinger picture, ρS(t).
What is it? Write ρS(t) in terms of ρS(0) and the time evolution operator U(t, 0).
Compare this result with the relation between a Heisenberg picture operator,
QH(t) and the Schrödinger picture operator, QS .

(b) How does the expectation value of an observable, Q, in the mixed state evolve
with time? Remember at a fixed time we found 〈Q〉 = Tr[Qρ]. What is the
analagous equation at a time t, in terms of ρS(t), or in terms of QH(t)?

(c) What is the Schrödinger equation for ρS(t)?

(d) Prove that a pure state cannot evolve into a mixed state or vica versa.

5. Quantum Consequences of a Magnetic Field (Sakurai, §2, Problem 25)

Consider an electron confined to the interior of a hollow cylindrical shell whose axis
coincides with the z-axis. The wave function is required to vanish on the inner and
outer walls, ρ = ρa and ρ = ρb, and also at the top and bottom, z = 0, L.

(a) Find the energy eigenvalues and eigenfunctions (ignore normalization). Show
that the eigenvalues are given by

Elmn =
~

2

2me

(

k2

mn +

(

lπ

L

)2
)

where kmn is the nth root of the transcendental equation,

Jm(kmnρb)Nm(kmnρa) − Jm(kmnρa)Nm(kmnρb) = 0

(b) Repeat the same problem when there is a uniform magnetic field, ~B = Bẑ for
0 < ρ < ρa. Note that the energy eigenvalues are influenced by the magnetic
field even though the electron never “touches” the magnetic field.

(c) Compare, in particular, the ground state of the B = 0 problem with that of the
B 6= 0 problem. Show that if we require the ground state energy to be unchanged
in the presence of B, we obtain the “flux quantization” condition,

πρ2

aB =
2πN~c

e
, for N = 0,±1,±2,±3, ...


