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Schroedinger Equation in one dimension. Piecewise constant potentials. Bound-
ary conditions.

In one dimension, the (time-dependent, time-independent) Schréedinger Equation is
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Very generally, a wave packet moving in the positive x-direction where the constant potential
is (0, V) has the forms:
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If V > E, the region is classically forbidden and the wavepacket instead falls off as
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Wavepackets are reflected (coefficient R, opposite direction) and transmitted (coefficient T', same

direction) at each boundary. Furthermore, at each boundary, the solutions to ¥(z) and %(m)

- must

match up.
We define the probability current, or flux:
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If there is no time dependence, the flux is constant across all boundaries. In the case of negative
energies (a particle is bound), the possible energies are quantized. Specifically, for a particle with
the nt" bound energy level travelling along a complete path, the Wilson-Sommerfeld quantization

rule gives:
7{ pdxr = nh

Potential Step: V(z) =0, x <0 and V(x) = Vo, z > 0.
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Equality of ¥(x) and %&x) from either side of x = 0 gives us 1 + R = T and ik(1 — R) = iqT,

respectively.
Potential Well: V(z) = —V), —a < x < a and V(z) = 0 otherwise.
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Potential Barrier: V(z) = Vj, —a < 2 < a and V(z) = 0 otherwise.
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Attractive Delta Potential: V(z) = —2731—25(:@
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Equating ¥(x), we have Ay + A = B, but because of the discontinuity of the derivative, we
have ik(Ag — A) — itkB = ¥(0).

Time evolution of the wavefunction. Decomposition into Eigenstates.

A wavefunction ¥(z) can be decomposed into some series of normalized eigenstates:
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If the particle is bound in a box of length a, then we can write:
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Each eigenfunction with an associated energy FE,, can be given a time evolution:
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If the particle is in free space, the wavefunction in momentum space may also be given a time

evolution:
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The eigenstates of the momentum operator are simultaneous eigenstates of energy (in free
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space):
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Harmonic Oscillator (Wavefunction and Operator approaches).
Has a potential of the form V(z) = %k‘:ﬂ, and we let w = \/%. Has energy of the form
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And eigensolutions of the form (here f,(x) is an n'* degree polynomial):

22
() = fo(x)e 22, valid for all

See below for some treatment of the Operator Method. Note that the |0 > state is such that

fl|0 > =0,and H|0 > = %hw|0 >. A properly normalized eigenket is
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If our eigenkets are properly normalized, then < n|m > = 6, . If they are not, then < n|n >

= nl. To return back to the wavefunction, we have (for n = 0, for example):
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Operator Algebra and Commutators. Dirac notation.

Some common operators:
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We also have an energy lowering operator A and an energy raising operator A+, such that:
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With properties that are, in the case of the Harmonic Oscillator:

An>=vnn—1>, Atln>=vVn+1in+1>

The commutator of A and B is:

(A B = AB - BA

A and B are said to commute if [A, B] = 0. Commutators have all sorts of intuitive properties.

Some important commutator results are [#,p] = ih, and [A, A+] = 1.

TODO: (need more here about Hermitians, conjugate adjoints and how they work backwards

on dirac notation etc.)
TODO: Dirac notation
Expected Values and Uncertainty.

The Heisenberg Uncertainty relation is



AxAk > %, AzxAp >
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The expected value of an operator A over a function (z) is

<A>=< AW|A >= / P(z)* A (z)dx
In general,
1 .
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Angular Momentum Formalism and Operators

We can express the Schroedinger Equation in spherical coordinates,
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We also have angular momentum operators in each direction L, Ly, L.. We can define
fg A2 A2 A2
L*=L, +L, +L,
However, only one of the momentum operators and L? can have simultaneous eigenfunctions.

Let this be L,. (Then, by rotational symmetry, < L, >=< L, >=0.) We also introduce a lowering
Ly and raising L_ operators that act to change m such that

Li=L,+iL,, Lillm>=h/(IFm)(Itm+1)[l,mE1l>

Note the following commutator properties:

[Li, Lj] = ihejeLy, [L*, L) =0, [L*,Ly]=0

Let [ be the angular momentum quantum number, and m the magnetic quantum number. If
we let our eigenkets be [l,m >, then

Ll,m > =1+ D|l,m >, L.l,m> = hm|l,m >

For a spherically symmetrical V' (p), the solutions look like ¥(p, 8, ¢) = R(p)Y (6, ¢). For a given
energy level n, 0 > 1 >n —1, and —1 > m > I. Y(6,¢) typically has terms of order sin/™(f),
cos=Im(9) and o™,

See the formula sheet for some Y,,;(0, ¢).

Hydrogen Atom, Quantum Numbers, Energy Levels
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This problem is characterized by V(r) =
(needs to be populated)



