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We investigate two types of electrical noise fundamental to any circuit, and their relation to
fundamental constants. Johnson noise of a controlled-gain system is measured across different
resistances and temperatures, leading to a calculation of the Boltzmann constant k =???±??? and
absolute zero T0 = −???±??? ◦C. The shot noise of a variable-current system is measured, leading
to a calculation of the electron charge at e =???±???. Sources of error are discussed.

1. INTRODUCTION

Though the fundamental “noisiness” of electrical con-
ductors had been known for some time, it was not un-
til 1918 that German physicist Walter Schottky identi-
fied and formulated a theory of “tube noise” - a fluc-
tuation in the current caused by the granularity of the
discrete charges composing it. Ten years later, Johnson
and Nyquist similarly analyzed a different type of noise
- one caused by the thermal fluctuations of stationary
charge carriers.

These are now known as “shot noise” and “Johnson
noise”, respectively, and it is a startling fact that neither
depends on the material or configuration of the electrical
circuit in which they are observed. Instead, the expres-
sions governing them are relatively simple, and depend on
several fundamental constants. A straightforward mea-
surement of the two types of background noise yields an
experimental value for these constants. It is our aim to
measure them.

2. THEORY

We present a summary of the theories of Johnson noise
and shot noise.

2.1. Johnson Noise and Nyquist’s Theorem

The thermal agitation of the charge carriers in any cir-
cuit causes a small, yet detectable, current to flow. J.B.
Johnson was the first to present a quantitative analysis
of this phenomenon, which is fundamentally present and
is unaffected by the geometry and material of the circuit.

H. Nyquist showed in his landmark 1928 paper [1] that
this problem was equivalent to the normal modes of elec-
trical oscillation along a shorted transmission line. By
the equipartition law of thermodynamics, every mode of
oscillation contributes kT average energy to the oscilla-
tion. If we consider an area of the frequency domain
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such that the normal modes with corresponding frequen-
cies in that range are very close, we can treat the domain
as continuous, such that each frequency differential df
contributes kTdf energy.

The energy is equal to I2R, where I is the current in
the line caused by this noise, and R is its resistance. The
corresponding voltage is V = (I)(2R), since we are con-
sidering a round-trip down the line to correspond to one
oscillation. With some algebraic manipulation, the dif-
ferential contribution to the square voltage from a given
frequency differential is dV 2 = 4kRTdf .

It remains to replace the resistance R with the char-
acteristic impedance in an RC circuit R

1+(2πfRC)2 , and
integrate over the entire frequency spectrum. We arrive
at

V 2 = 4RkT

∫ ∞

0

[g(f)]2

1 + (2πfCR)2
df (1)

2.2. Shot Noise

The quantization of the charge carried by electrons in a
circuit also contributes to a small amount of noise in any
circuit. Consider a photoelectric circuit in which current
caused by the photoexcitation of electrons flow to the
anode. Consider a relatively long time T over which an
average current Iavg is observed. The average number of
electrons hitting the anode per second is Iavg/e.

If we assume that the inductive response of the circuit
to the electron leaving the circuit is much faster than
the typical time between events, we can approximate the
current pulse In(t) as a delta function centered at some
time tn: In(t) = eδ(t − tn). The Fourier decomposition
of this over the time domain [0, T ] is given by

In(t) =
e

T
+

2e

T

∑
m

cos
2πm(t− tn)

T
(2)

Where the terms on the right are the fluctuating com-
ponents. Consider the contribution to the rms-current
d < I2 > resulting from fluctuating components with
that frequency. Since the phases tn can be anywhere from
0 to T , we average the cosine term over all possible values.
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Thus, for a given fluctuating component with frequency
m, d < I2 >=< ( 2e

T )2 >< cos2(2πmt− φ) >= 2e2

T 2 .
Since there are df = dm/T such components in any

frequency band, and the total number of such pulses over
time T is IavgT/e, our expression becomes d < I2 >=
2eIavgdf . Of course, we are observing the current after
any amplification and attenuation from the circuit, so
really the contrbution from this frequency is g(f)2(dI2).
Consider the voltage V0 = IRF instead of the current,
and integrating over all possible frequencies, we arrive at

V 2
0 = 2eIavR2

F

∫
0

[g(f)]2 df + V 2
A (3)

The V 2
A term represents sources of background noise

such as Johnson noise that are constant when the resis-
tance and temperature are constant, as they are in our
experimental setup. We see that unlike Johnson noise,
shot noise is independent of temperature and resistance,
but is only present when a current is flowing.

The derivation of the shot noise expression above is
inspired by one by Seth Dorfman [2].

3. EXPERIMENTAL SETUP

3.1. Experimental Procedure

We began both the Johnson noise and Shot noise
experiments with a careful calibration of measurement
chain. This was done by measuring the output of a strong
sinusoidal signal from a function generator attenuated by
60 dB. Before each experiment, we measured the ratio
g(f) =

Vout(f)

Vin(f) at enough frequencies to effectively model

g(f). We calculated the mean and standard deviation of
each Vin(f) and Vout(f).

In the case of the Johnson noise experiment, we mea-
sured the rms voltage VR of the noise as calculated by
the oscilloscope twenty times for ten different values of
the resistance, ranging from 10 kΩ to 1 MΩ. We then
used the same 500 kΩ resistor to measure the rms voltage
across different temperatures by submersing the assem-
bly in liquid nitrogen (T = 77 K) and a heated air bath
(T < 100◦ C), measuring the temperature with a mer-
cury thermometer. For each measurement at a given re-
sistance and temperature, we shorted the circuit to mea-
sure the rms background noise voltage VS ; the difference
in the two is the Johnson noise.

In the case of the shot noise experiment, we termi-
nated the calibration input and turned on the internal
lamp. We recorded the rms voltage V0 of the noise as
calculated by the oscilloscope twenty times for eight dif-
ferent intensities of the light VF . We then break the
photocircuit and record the constant noise level VA.

In both cases, the measured noise changed slightly
based on the integration time used by the oscilloscope,
but this uncertainty ranged on the order of 0.1%, and we

ignore it, since it is dwarfed by the uncertainty caused
by random fluctuations in V or V0, respectively.

4. DATA AND ERROR ANALYSIS

4.1. Calculation of Gain

To evaluate the two integrals present in (1) and (3),
we turn to numerical integration through the trape-
zoidal rule. Given a function f evaluated at some points
x1, . . . , xn, its integral can be approximated with a sum
S

∫ xn

x1

f(x) dx '
n−1∑
i=1

1
2
(f(xi) + f(xi+1))(xi+1 − xi) = S

(4)
There are two sources of error involved in this calcula-

tion. The first is the uncertainty in the values of f(xi),
which add in quadrature with coefficients given by (4):

σ2
S =

n−1∑
i=1

(σ2
f(xi)

+ σ2
f(xi+1)

)
1
4
(xi+1 − xi)2 (5)

The second is the error inherent in using the trape-
zoidal rule to estimate the value of a definite integral,
and is more difficult to compute.

TODO: SECOND SOURCE OF ERROR
Using the methods described above, we can imme-

diately calculate the integral in (3), since
(

σg2

g2

)2

=(
2σVin

Vin

)2

+
(
2σVout

Vout

)2

:

∫ ∞

0

[g(f)]2 df ' (6.27± .45) × 1010 (6)

The integral in (1) is trickier. In particular, it varies
with R and thus must be calculated for each value
thereof. Furthermore, it has a relatively complex error
expression. To get around this, we perfomed a thousand-
point Monte Carlo simulation for every calculated calcu-
lated value of G, and derived an uncertainty. In general,
the relative error in G as calculated above was not above
???%.

4.2. Determination of Boltzmann’s Constant

We consider (1) at room temperature, such that T is
constant. We replace V 2 with V 2

R − V 2
S , which is the

difference in the measured noise across a given resistor
and the background noise present in the shorted circuit.
To derive a value for k, we plot V 2/4TG against R in
Figure 1, and calculate the least-squares-fit line to the
data using MATLAB’s fitlin.m procedure.
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FIG. 1: Plot of V 2/(4GT ) versus R, with fitted line.

FIG. 2: Plot of V 2/(4GR) versus T , with fitted line.

The are statistical fluctuations in V 2 and G, and the
recorded temperature varied slightly throughout the ex-
periment - T = 24.4 ± .2 ◦ C. The uncertainty in the
variable on the ordinate is determined by simple error
propagation [3]:

(
σy

y

)2

= 2
σ2

V 2
R

+ σV 2
S

(V 2)2
+

(σT

T

)2

+
(σG

G

)2

(7)

The slope of the line is simply k. With a reduced-
chi-squared of χ2

ν = 1.8, we obtain k = (1.48 ± .07) ×
10−23J/K.

4.3. Determination of Absolute Zero

We consider (1) across variable temperature, with a
single chosen value of resistance. In this case, G does
not vary with R; they are both constant. We plot V 2

as a function of T in Figure 2, and calculate the least-
squares-fit line to the data using MATLAB’s fitlin.m
procedure. The slope is a calculation of the coefficient of
T . With a reduced-chi-squared value of χ2

ν

FIG. 3: Plot of V 2
A versus VF , with a fitted line.

4.4. Determination of the Electron Charge

We rearrange (3), replacing IavRF with the photoelec-
tric voltage VF , and letting VA be the noise measured
when no photelectric current flows.

(V 2
0 − V 2

A) = 2eVF RF

[∫ ∞

0

g(f)2df
]

(8)

The relative error inherent in the left-hand side is given
by the formula below. Since we do not expect the random
fluctuations in VA to have any correlations with those in
our measurement of V0, we do not consider any covariant
σVA,V0 terms.

err(V 2
0 − V 2

A) =

√(
2
σV0

V0

)2

+
(

2
σVA

VA

)2

(9)

A salient feature of our tabulated values of V0 for
each VF is the presence of data points several stan-
dard deviations away from the mean. Using Chau-
venet’s criterion[3], we discarded points whose expected
occurence was less than half an event. This resulted in
the loss of about 4% of the most egregiously outlying
data. We plot this value for every value of VF in Fig-
ure 3, and calculate the least-squares-fit line to the data
using MATLAB’s fitlin.m procedure.

The slope is a calculation of the coefficient of VF in (8).
With a reduced-chi-squared of χ2

ν = 0.74, we obtain

2eRF

[∫ ∞

0

g(f)2df
]

= 9.63± .25 C · Ω ·Hz

Our derived value of the electron charge is a function
of this value, the integral of the square of the gain func-
tion, as calculated in 8, and value of the resistance RF ,
which we found to be 450 ± 10kΩ, with the uncertainty
given by the tolerance of the ohmmeter used to measure
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it. Again, after throwing out the covariant terms, the
relative uncertainties add in quadrature.

e =
9.63 C · Ω ·Hz

2(450kΩ)(6.27× 1010 Hz)
= 1.71 × 10−16 C

σe

e
=

√(
.25
9.63

)2

+
(

10
450

)2

+
(

.46
6.27

)2

= .14 × 10−16 C

This leads to a value of the electron charge e = (1.71±
.14) × 10−19 C.

5. CONCLUSIONS

In general, our results are in good, but not great, agree-
ment with the literature values.

Our value of Boltzmann’s constant k = (1.48± .07) ×
10−23 J/K is a standard deviation and a half away
from the established value of 1.38 × 10−23 J/K. Our
value of absolute zero ??? is ??? the established value
of −273.15 ◦C. Our value of the electron charge e =
(1.71 ± .14) × 10−19 C is within a standard deviation
from the established value of 1.60× 10−19 C. The tight-
ness of the fits of our lines was decent, with reduced-
chi-square values ranging from .74 to 1.8, so we can be
reasonably sure that of the three linear relations we have
been attempting to demonstrate.

Our error bars are noticably high - 8% in the case
of the electron charge. There are several contributors
to this fact. Chief among them was the high variance
present in any measurements of noise involving the oscil-
loscope. We observed that a number of outside factors
caused the noise to voltage to fluctuate. To combat this,
we have attempted to choose an appropriate integrating
time, electrically isolate the wires, and periodically stop
to calculate whether the values we were observing were
sensible.

Furthermore, while we trust that we were justified
in discarding every data point we removed by invoking
Chauvenet’s principle (some had expected numbers of
events on the order of .001), the large number of such
points is disconcerting, and hints at sources of error we
have not taken into account.

In addition, the fitness of our numerical integration
method is a candidate for discussion.

We have tried to choose a consistent and rigorous
methodology in our analysis. Several factors impeded
this. In particular, we cannot ultimately be sure of the
integrity of our temperature-varying Johnson noise data.
The variac, air-bath and thermometer setup was rela-
tively precarious, and we are inclined to believe that any
number of sources of error negatively impacted our re-
sults.
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