6.946 Assignment 11

Dennis V. Perepelitsa

18 December 2006
Gerald Jay Sussman, Jack Wisdom

Exercise 5.26: Uniform acceleration

(a) First, let's the solve the simpler problem of computing the action for a uniformly accelerated particle which is at $q_{1}(t 1=0)=0$ initially, and at q_{2} at time t_{2} later. A particle with acceleration alpha moves a distance of $q_{2}=\frac{1}{2} \alpha t_{2}^{2}$ in t_{2} seconds. Its velocity is time-dependent, and is given by $D(q(t))=\alpha t$.

For a free particle with Lagrangian $L(t ; x ; v)=\frac{1}{2} m v^{2}$, the action on the particle is

$$
\begin{aligned}
S[q]\left(0, t_{2}\right)=\int_{t=0}^{t=t_{2}} L \circ \Gamma[q]= & \frac{1}{2} m \int_{t=0}^{t=t 2}[D q(t)]^{2} d t=\frac{1}{2} m \int_{t=0}^{t=t 2}[\alpha t]^{2} d t=\frac{1}{2} m \alpha^{2} \frac{1}{3} t^{3} \\
& \frac{1}{6} m t^{3}\left[\frac{2 q_{2}}{t_{2}^{2}}\right]^{2}=\frac{2}{3} m \frac{q_{2}^{2}}{t_{2}}
\end{aligned}
$$

Using the fact that the action is defined by integrals, we can compute the more general action on the solution path between $q_{1}\left(t_{1}\right)$ and $q_{2}\left(t_{2}\right)$.

$$
S[q]\left(t_{1}, t_{2}\right)=\int_{t=t_{1}}^{t=t_{2}} L \circ \Gamma[q]=\int_{t=0}^{t=t_{2}} L \circ \Gamma[q]-\int_{t=0}^{t=t_{1}} L \circ \Gamma[q]=\frac{2}{3} m\left(\frac{q_{2}^{2}}{t_{2}}-\frac{q_{1}^{2}}{t_{1}}\right)
$$

Let's quickly double-check this. Let a particle have $m=1$ and uniform acceleration $\alpha=2$. The solution path is $q(t)=t^{2}$. Between $t_{1}=1$ and $t_{2}=5$, the action is $\frac{2}{3}\left(\frac{25^{2}}{5}-\frac{1^{2}}{1}\right)=\frac{248}{3}=82.666 \ldots$. Calculating by computer, we get

```
(define (min-path t) (up (* t t)))
(Lagrangian-action (L-free-particle 1.0) min-path 1.0 5.0)
;Value: 82.6666666666666
```

Which leads to reasonable confidence in our answer. This is the action that generated timeevolution

$$
\tilde{F}\left(t_{1}, q_{1}, t_{2}, q_{2}\right)=S[q]\left(t_{1}, t_{2}\right)
$$

We can find the momenta by taking the partial derivatives with respect to the momenta:

$$
\begin{aligned}
-p_{1} & =\partial_{1} \tilde{F}=-\frac{4}{3} m \frac{q_{1}}{t_{1}} \\
p_{2} & =\partial_{3} \tilde{F}=\frac{4}{3} m \frac{q_{2}}{t_{2}}
\end{aligned}
$$

These are in fact the average momenta for the particle over the first t_{1} and t_{2} seconds, respectively. Using our original definitions of the the coordinate and momenta for a uniformly accelerated particle, we can derive equations for p_{2} and q_{2} given an initial state $\left(t_{1}, p_{1}, q_{1}\right)$ as a function of t_{2}.

$$
\begin{aligned}
& p_{2}=p_{1}+\alpha t=p_{1}+2 m \frac{q_{1}}{t_{1}^{2}}\left(t_{2}-t_{1}\right)=2 m \frac{q_{1}}{t_{1}^{2}} t_{2} \\
& q_{2}=q_{1}+\frac{1}{2} \alpha\left(t_{2}^{2}-t_{1}^{2}\right)=\frac{1}{2} 2 \frac{q_{1}}{t_{1}^{2}}\left(t_{2}^{2}\right)=q_{1}\left(\frac{t_{2}}{t_{1}}\right)^{2}
\end{aligned}
$$

Exercise 5.27: Binomial series

The Taylor expansion of $(1+x)^{n}$ around $x=0$ for abitrary n is given by:

$$
\begin{aligned}
& (1+\epsilon)^{n}=\sum_{i=0}^{\infty} \frac{\epsilon^{i}}{i!}\left[\left.\frac{d^{i}}{d x^{i}}(1+x)^{n}\right|_{x=0}\right] \\
= & \sum_{i=0}^{\infty} \frac{\epsilon^{i}}{i!} n(n-1) \ldots(n-i)(1+0)^{n-i-1}
\end{aligned}
$$

The $i^{\text {th }}$ term contains the polynomial in n given by $\prod_{j=0}^{i}(n-j)$ as a factor. However, for all $i>n$, one of the factors is $(n-n)=0$, and all the terms higher-order than the $n^{t h}$ are zero.

Thus, the $i^{\text {th }}$ term of this Taylor expansion is zero when $n<i$.

Exercise 5.30: Commutators of Lie derivatives

(a) Consider the action of the commutator of two Lie derivatives on an arbitrary phase-space function F .

$$
\begin{gathered}
{\left[L_{W}, L_{W^{\prime}}\right] F=\left(L_{W} L_{W^{\prime}}-L_{W^{\prime}} L_{W}\right) F=L_{W}\left(\left\{F, W^{\prime}\right\}\right)-L_{W^{\prime}}(\{F, W\})} \\
=-L_{W}\left(\left\{W^{\prime}, F\right\}\right)-L_{W^{\prime}}(\{F, W\})=-\left\{\left\{W^{\prime}, F\right\}, W\right\}-\left\{\{F, W\}, W^{\prime}\right\} \\
=\left\{W,\left\{W^{\prime}, F\right\}\right\}+\left\{W^{\prime},\{F, W\}\right\} \\
=\left(\left\{W,\left\{W^{\prime}, F\right\}\right\}+\left\{W^{\prime},\{F, W\}\right\}+\left\{F,\left\{W, W^{\prime}\right\}\right\}\right)-\left\{F,\left\{W, W^{\prime}\right\}\right\}
\end{gathered}
$$

By Jacobi's cyclic Poisson bracket identity (3.92), the first term is zero.

$$
=-\left\{F,\left\{W, W^{\prime}\right\}\right\}=-L_{\left\{W, W^{\prime}\right\}} F
$$

(b) We compute the structured partial derivatives of the angular momenta functions.

$$
\begin{gathered}
\partial_{0} J_{x}=\partial_{0} J_{y}=\partial_{0} J_{z}=0 \\
\partial_{1} J_{x}=\left(\begin{array}{c}
0 \\
p_{z} \\
-p_{y}
\end{array}\right), \partial_{1} J_{y}=\left(\begin{array}{c}
-p_{z} \\
0 \\
p_{x}
\end{array}\right), \partial_{1} J_{z}=\left(\begin{array}{c}
p_{y} \\
-p_{x} \\
0
\end{array}\right) \\
\partial_{2} J_{x}=\left(\begin{array}{c}
0 \\
-z \\
y
\end{array}\right), \partial_{2} J_{y}=\left(\begin{array}{c}
z \\
0 \\
-x
\end{array}\right), \partial_{2} J_{z}=\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)
\end{gathered}
$$

The commutator of the Lie derivative with respect to the first two of these can be expressed as a single Lie derivative, by part (a) above:

$$
\left[L_{J_{x}}, L_{J_{y}}\right]=-L_{\left\{J_{x}, J_{y}\right\}}
$$

The Poisson bracket is

$$
\begin{gathered}
\left\{J_{x}, J_{y}\right\}=\partial_{1} J_{x} \partial_{2} J_{y}-\partial_{2} J_{x} \partial_{1} J_{y}=\left(\begin{array}{c}
0 \\
p_{z} \\
-p_{y}
\end{array}\right)\left(\begin{array}{c}
z \\
0 \\
-x
\end{array}\right)-\left(\begin{array}{c}
0 \\
-z \\
y
\end{array}\right)\left(\begin{array}{c}
-p_{z} \\
0 \\
p_{x}
\end{array}\right) \\
=x p_{y}-y p_{x}=J_{z}
\end{gathered}
$$

We arrive at

$$
\left[L_{J_{x}}, L_{J_{y}}\right]+L_{J_{z}}=0
$$

This is also true if we cyclically permute $\left(J_{x}, J_{y}, J_{z}\right)$.
(c) We begin with the Jacobi Poisson-bracket identity, for any three operators F, G and H.

$$
\{F,\{G, H\}\}+\{H,\{F, G\}\}+\{G,\{H, F\}\}=0
$$

Thus, the Lie derivative with respect to this is zero. Since the Lie derivative is linear, we can split it up into three Lie derivatives:

$$
\begin{gathered}
L_{\{F,\{G, H\}\}+\{H,\{F, G\}\}+\{G,\{H, F\}\}}=L_{0}=0 \\
L_{\{F,\{G, H\}\}}+L_{\{H,\{F, G\}\}}+L_{\{G,\{H, F\}\}}=0 \\
-\left[L_{\{G, H\}}, L_{F}\right]-\left[L_{\{F, G\}}, L_{H}\right]-\left[L_{\{H, F\}}, L_{G}\right]=0 \\
-\left[\left[L_{H}, L_{G}\right], L_{F}\right]-\left[\left[L_{G}, L_{F}\right], L_{H}\right]-\left[\left[L_{F}, L_{H}\right], L_{G}\right]=0 \\
{\left[L_{F},\left[L_{H}, L_{G}\right]\right]+\left[L_{H},\left[L_{G}, L_{F}\right]\right]+\left[L_{G},\left[L_{F}, L_{H}\right]\right]=0}
\end{gathered}
$$

The more general result, which holds for any three operators A, B and C (not just Lie derivatives), is known as the Jacobi identity for operators:

$$
[A,[B, C]]+[B,[A, C]]+[C,[A, B]]=0
$$

Exercise 6.2: Resonance width

The value of the original Hamiltonian $H=H_{0}+\epsilon H_{1}$ for a periodically driven pendulum given in (6.54) must remain the same along any contour. Since we are interested in the $+\omega$ resonance phenomenon, we do not consider the 0 or $-\omega$ terms. Our Hamiltonian is

$$
H\left(\tau ; \theta, t ; p, p_{t}\right)=H_{0}+\epsilon H_{1}=\left(p_{t}+\frac{1}{2 \alpha} p^{2}\right)+\epsilon \gamma \cos (\theta-\omega t)
$$

Let Δ be the resonance half-width. The value of the Hamiltonian at $(\sigma, \Sigma)=(0, \alpha \omega)$ must be the same as the value at $(\pi, \alpha \omega \pm \Delta)$.

Using the transformation given by (6.77), we can translate these coordinates back into our original $\left(\theta, t, p, p_{t}\right)$ coordinate frame:

$$
\begin{gathered}
\theta-\omega t=\sigma \\
p=\Sigma \\
p_{t}=p_{t}^{\prime}-\omega \Sigma
\end{gathered}
$$

The original Hamiltonian in terms of these values looks like

$$
H\left(\tau ; \sigma, t^{\prime} ; \Sigma, p_{t}^{\prime}\right)=p_{t}^{\prime}-\omega \Sigma+\frac{1}{2 \alpha} \Sigma^{2}+\epsilon \gamma \cos \sigma
$$

We equate the Hamiltonian at the two values

$$
\begin{gathered}
H\left(\tau ; \sigma=0, t^{\prime} ; \Sigma=\alpha \omega, p_{t}^{\prime}\right)=H\left(\tau ; \sigma=\pi, t^{\prime} ; \Sigma=\alpha \omega \pm \Delta, p_{t}^{\prime}\right) \\
p_{t}^{\prime}-\alpha \omega^{2}+\frac{1}{2} \alpha \omega^{2}+\epsilon \gamma=p_{t}^{\prime}-\alpha \omega^{2} \mp \omega \Delta+\frac{1}{2 \alpha}\left(\alpha^{2} \omega^{2} \pm 2 \alpha \omega \Delta+\Delta^{2}\right)-\epsilon \gamma \\
-\frac{1}{2} \alpha \omega^{2}+\epsilon \gamma=-\alpha \omega^{2} \mp \omega \Delta+\frac{1}{2} \alpha \omega^{2} \pm \omega \Delta+\frac{1}{2 \alpha} \Delta^{2}-\epsilon \gamma \\
2 \epsilon \gamma=\frac{1}{2 \alpha} \Delta^{2} \\
\Rightarrow \Delta
\end{gathered}
$$

