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Exercise 5.26: Uniform acceleration

(a) First, let’s the solve the simpler problem of computing the action for a uniformly accelerated
particle which is at q1(t1 = 0) = 0 initially, and at q2 at time t2 later. A particle with acceleration
alpha moves a distance of q2 = 1

2
αt22 in t2 seconds. Its velocity is time-dependent, and is given by

D(q(t)) = αt.
For a free particle with Lagrangian L(t;x; v) = 1

2
mv2, the action on the particle is
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Using the fact that the action is defined by integrals, we can compute the more general action
on the solution path between q1(t1) and q2(t2).

S[q](t1, t2) =

∫ t=t2

t=t1

L ◦ Γ[q] =

∫ t=t2

t=0

L ◦ Γ[q] −
∫ t=t1

t=0

L ◦ Γ[q] =
2

3
m

(

q2
2

t2
− q2

1

t1

)

Let’s quickly double-check this. Let a particle have m = 1 and uniform acceleration α = 2. The

solution path is q(t) = t2. Between t1 = 1 and t2 = 5, the action is 2

3

(

252

5
− 12

1

)

= 248

3
= 82.666 . . . .

Calculating by computer, we get

(define (min-path t) (up (* t t)))

(Lagrangian-action (L-free-particle 1.0) min-path 1.0 5.0)

;Value: 82.6666666666666

Which leads to reasonable confidence in our answer. This is the action that generated time-
evolution

F̃ (t1, q1, t2, q2) = S[q](t1, t2)

We can find the momenta by taking the partial derivatives with respect to the momenta:

−p1 = ∂1F̃ = −4

3
m

q1

t1

p2 = ∂3F̃ =
4

3
m

q2

t2

These are in fact the average momenta for the particle over the first t1 and t2 seconds, respec-
tively. Using our original definitions of the the coordinate and momenta for a uniformly accelerated
particle, we can derive equations for p2 and q2 given an initial state (t1, p1, q1) as a function of t2.
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p2 = p1 + αt = p1 + 2m
q1
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Exercise 5.27: Binomial series

The Taylor expansion of (1 + x)n around x = 0 for abitrary n is given by:

(1 + ǫ)n =

∞
∑

i=0

ǫi

i!

[

di

dxi
(1 + x)n

∣

∣

∣

∣

x=0

]

=
∞
∑

i=0

ǫi

i!
n(n − 1) . . . (n − i)(1 + 0)n−i−1

The ith term contains the polynomial in n given by
∏i

j=0
(n − j) as a factor. However, for all

i > n, one of the factors is (n − n) = 0, and all the terms higher-order than the nth are zero.
Thus, the ith term of this Taylor expansion is zero when n < i.

Exercise 5.30: Commutators of Lie derivatives

(a) Consider the action of the commutator of two Lie derivatives on an arbitrary phase-space
function F.

[LW , LW ′ ]F = (LW LW ′ − LW ′LW )F = LW ({F,W ′}) − LW ′({F,W})

= −LW ({W ′, F}) − LW ′({F,W}) = −{{W ′, F},W} − {{F,W},W ′}
= {W, {W ′, F}} + {W ′, {F,W}}

= ({W, {W ′, F}} + {W ′, {F,W}} + {F, {W,W ′}}) − {F, {W,W ′}}
By Jacobi’s cyclic Poisson bracket identity (3.92), the first term is zero.

= −{F, {W,W ′}} = −L{W,W ′}F

(b) We compute the structured partial derivatives of the angular momenta functions.

∂0Jx = ∂0Jy = ∂0Jz = 0

∂1Jx =





0
pz

−py



 , ∂1Jy =





−pz

0
px



 , ∂1Jz =





py

−px

0





∂2Jx =





0
−z

y



 , ∂2Jy =





z

0
−x



 , ∂2Jz =





−y

x

0





The commutator of the Lie derivative with respect to the first two of these can be expressed as
a single Lie derivative, by part (a) above:
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[LJx
, LJy

] = −L{Jx,Jy}

The Poisson bracket is

{Jx, Jy} = ∂1Jx∂2Jy − ∂2Jx∂1Jy =





0
pz

−py









z

0
−x



 −





0
−z

y









−pz

0
px





= xpy − ypx = Jz

We arrive at

[LJx
, LJy

] + LJz
= 0

This is also true if we cyclically permute (Jx, Jy, Jz).

(c) We begin with the Jacobi Poisson-bracket identity, for any three operators F , G and H.

{F, {G,H}} + {H, {F,G}} + {G, {H,F}} = 0

Thus, the Lie derivative with respect to this is zero. Since the Lie derivative is linear, we can
split it up into three Lie derivatives:

L{F,{G,H}}+{H,{F,G}}+{G,{H,F}} = L0 = 0

L{F,{G,H}} + L{H,{F,G}} + L{G,{H,F}} = 0

−[L{G,H}, LF ] − [L{F,G}, LH ] − [L{H,F}, LG] = 0

−[[LH , LG], LF ] − [[LG, LF ], LH ] − [[LF , LH ], LG] = 0

[LF , [LH , LG]] + [LH , [LG, LF ]] + [LG, [LF , LH ]] = 0

The more general result, which holds for any three operators A, B and C (not just Lie deriva-
tives), is known as the Jacobi identity for operators:

[A, [B,C]] + [B, [A,C]] + [C, [A,B]] = 0

Exercise 6.2: Resonance width

The value of the original Hamiltonian H = H0 + ǫH1 for a periodically driven pendulum given
in (6.54) must remain the same along any contour. Since we are interested in the +ω resonance
phenomenon, we do not consider the 0 or −ω terms. Our Hamiltonian is

H(τ ; θ, t; p, pt) = H0 + ǫH1 =

(

pt +
1

2α
p2

)

+ ǫγ cos(θ − ωt)

Let ∆ be the resonance half-width. The value of the Hamiltonian at (σ,Σ) = (0, αω) must be
the same as the value at (π, αω ± ∆).

Using the transformation given by (6.77), we can translate these coordinates back into our
original (θ, t, p, pt) coordinate frame:
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θ − ωt = σ

p = Σ

pt = p′t − ωΣ

The original Hamiltonian in terms of these values looks like

H(τ ;σ, t′; Σ, p′t) = p′t − ωΣ +
1

2α
Σ2 + ǫγ cos σ

We equate the Hamiltonian at the two values

H(τ ;σ = 0, t′; Σ = αω, p′t) = H(τ ;σ = π, t′; Σ = αω ± ∆, p′t)

p′t − αω2 +
1

2
αω2 + ǫγ = p′t − αω2 ∓ ω∆ +

1

2α
(α2ω2 ± 2αω∆ + ∆2) − ǫγ

−1

2
αω2 + ǫγ = −αω2 ∓ ω∆ +

1

2
αω2 ± ω∆ +

1

2α
∆2 − ǫγ

2ǫγ =
1

2α
∆2

⇒ ∆ = 2
√

αǫγ
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