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Exercise 2.2: Steiner’s Theorem

The moment of inertia with respect to the first line is given by I =
∑

α mα(ξ⊥α )2, where mα is
the mass of the individual particle, and ξα is the vector from the reference point to the individual
point. Since the axis of rotation goes through the center of mass, the first line goes through the
reference point.

Let ~R be a perpendicular vector from the first line to the second, and let ξ⊥α
′
= ξ⊥α + ~R be the

reference vector from the second line to the individual particle. The new moment of inertia I ′ is
given by:

I ′ =
∑

α

mα(ξ⊥α
′
)2 =

∑

α

mα(ξ⊥α + ~R)2 =
∑

α

mα

(

(ξ⊥α )2 + 2ξ⊥α ~R + R2
)

=

=
∑

α

mα(ξ⊥α )2 +
∑

α

mα2ξ⊥α ~R + R2
∑

α

mα = I +
∑

α

mα2ξ⊥α ~R + MR2

By the definition of the center of mass,
∑

α mαξ⊥α = 0, and the middle term drops out. So

I ′ = I + MR2

Exercise 2.3: Some useful moments of inertia
In the continuous case, we can replace the equation for the moment of inertia with

I =

∫

M
(r⊥)2dm,

where r⊥ is the perpendicular distance from the axis of rotation to the position of dm, and we
integrate over the entire mass.
(a) We introduce a density δ = dm

dV = M
4

3
πR3

. Consider a spherical coordinate system, and let the

axis of rotation be the z-axis.

I =

∫

M
r2
⊥dm =

∫

V
r2
⊥

dm

dV
dV = δ

∫ ρ=R

ρ=0

∫ θ=2π

θ=0

∫ φ=π

φ=0
r2
⊥(ρ2 sin φ dφ dθ dρ)

Since the axis of rotation is the z-axis, the perpendicular distance is just r⊥ = ρ sin φ, and we
continue the calculation2:

I = δ

∫ ρ=R

ρ=0

∫ θ=2π

θ=0

∫ φ=π

φ=0
(ρ sin φ)2ρ2 sin φ dφ dθ dρ = δ2π

∫ ρ=R

ρ=0

∫ φ=π

φ=0
ρ4 sin3 φ dφ dρ

1This only contains the first four of six problems. I’m turning the other two problems in on Tuesday.
2We use the easily verifiable fact that

R

sin3(x)dx = 2

3
sin

2(x)cos(x) + 1

3
cos(x).
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= δ2π
R5

5

∫ φ=π

φ=0
sin3 φ dφ = δ2π

R5

5

[

1

3
sin2 φ cos φ +

2

3
cos φ

]φ=π

φ=0

= δ2π
R5

5

4

3
=

M
4
3πR3

2π
R5

5

4

3
=

24πMR5

60πR3
=

2

5
MR2

(b) We introduce a mass-per-surface-area constant δ = dm
dS = M

4πR2 . Consider a spherical coordinate
system, and let the axis of rotation be the z-axis.

I =

∫

M
r2
⊥dm =

∫

S
r2
⊥

dm

dS
dS = δ

∫ θ=2π

θ=0

∫ φ=π

φ=0
r2
⊥(R2 sin φ dφ dθ)

Since the axis of rotation is the z-axis, the perpendicular distance is just r⊥ = R sin φ, and we
continue the calculation:

I = δR2

∫ θ=2π

θ=0

∫ φ=π

φ=0
(R sin φ)2 sin φ dφ dθ = δR42π

∫ φ=π

φ=0
sin3 φ dφ

= δR42π

[

1

3
sin2 φ cos φ +

2

3
cos φ

]φ=π

φ=0

= δR42π
4

3
=

M

4πR2
R42π

4

3
=

8πMR4

12πR2
=

2

3
MR2

Exercise 2.4: Jupiter

(a) We can write the rotational inertia of both a sphere with equal density and a planet as
∫

V
dm
dV r2dV . In the case of the planet, dm

dV is a constant density, but in the case of the planet,
this term is large when r is small and small when r is large. Thus, those mass infinitesimals con-
tribute less to the total value of the integral, since they are integrated at a lower value of r than
in the case of the sphere. Thus, the moment of inertia is smaller for a planet than for a sphere of
uniform density of the same mass and radius.
(b) We use a spherical coordinate system, and align the z-axis with the axis of rotation. The

variable density is given by dm
dV = M

R3

sin(πr/R)
4r/R .

I =

∫

M
r2
⊥dm =

∫

V
r2
⊥

dm

dV
dV =

∫ r=R

r=0

∫ θ=2π

θ=0

∫ φ=π

φ=0
(r2

⊥)

(

M

R3

sin(πr/R)

4r/R

)

(r2 sin φ dφ dθ dr)

=
M

4R2

∫ r=R

r=0

∫ θ=2π

θ=0

∫ φ=π

φ=0
(r2

⊥) r sin(πr/R) sin φ dφ dθ dr

= 2π
M

4R2

∫ r=R

r=0

∫ φ=π

φ=0
(r2

⊥) r sin(πr/R) sin φ dφ dr

Since the axis of rotation is the z-axis, the perpendicular distance is just r⊥ = r sin φ, and we
continue the calculation:

= 2π
M

4R2

∫ r=R

r=0

∫ φ=π

φ=0
(r2sin2 φ) r sin(πr/R) sin φ dφ dr

= 2π
M

4R2

∫ r=R

r=0

∫ φ=π

φ=0
sin2 φ r3 sin(πr/R) sin φ dφ dr
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= 2π
M

4R2

∫ r=R

r=0
r3 sin(πr/R) dr

∫ φ=π

φ=0
sin3 φ dφ

We know from 2.3 (a) that the integral on the right is 4
3 . We look up the integral on the left

on the internet3.

= 2π
M

4R2

[

3(
(

π
R

)2
r2 − 2)sin(πr/R)

(

π
R

)4 − r(
(

π
R

)2
r2 − 6)cos(πr/R)

(

π
R

)3

]r=R

r=0

[

4

3

]

= 2π
M

3R2

[

(0 − R(
(

π
R

)2
R2 − 6)cos(π)
(

π
R

)3 ) − (0 − 0)

]

=
2Mπ

3R2

[

R4 π2 − 6

π3

]

=
2MR2

3

π2 − 6

π2
=

2

3

(

1 − 6

π2

)

MR2

Which is less than the moment of inertia of a sphere with equal, albeit evenly distributed, mass
- 2

3MR2.

Exercise 2.5: A constraint on the moments of inertia

Let there be some arrangement of particles {α} with mass {mα} and position rα = rα,1ê1 +
rα,2ê2 + rα,3ê3 with respect to some set of orthonormal axes {êi}. Consider the sum of any two
moments of inertia, say I11 and I22, and compare it with I33.

I11 + I22 =
∑

α

mα

(

(ê1 × rα)2 + (ê2 × rα)2
)

=
∑

α

mα

(

(r2
α,2 + r2

α,3) + (r2
α,1 + r2

α,3)
)

I33 =
∑

α

mα (ê3 × rα)2 =
∑

α

mα

(

r2
α,1 + r2

α,2

)

So I11 + I22 ≥ I33. (In particular, there is only equality if
∑

α r2
α,3 = 0.) By symmetry, this is

true for any choice of orthonormal axes. The sum of any two moments of inertia are greater than
or equal to the third.

Exercise 2.6: Principal moments of inertia

(a) We choose a set of axes, and show that they are the principal axes. Let (0, 0, 0) be the origin

and center of mass, and let r1 = ( 1√
3
, 0,−1

4

√

2
3), r2, r3 = (− 1

2
√

3
,±1

2 ,−1
4

√

2
3), and p4 = (0, 0, 3

4

√

2
3 )

be the four points. Thus, the distance between any two points is 1. The orthogonal axis we choose
is (x̂, ŷ, ẑ). We intend to calculate the components of the moments of inertia for every combination
(i, j):

Iij =
∑

α

mα(ei × rα) · (ej × rα)

Before we do this, however, we determine the cross product of the axes with the different {ri}:
3http://integrals.wolfram.com/index.jsp
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x̂ × r1 =
1

4

√

2

3
ŷ, ŷ × r1 = −1

4

√

2

3
x̂ − 1√

3
ẑ, ẑ × r1 =

1√
3
ŷ

x̂ × r2 =
1

4

√

2

3
ŷ +

1

2
ẑ, ŷ × r2 = −1

4

√

2

3
x̂ +

1

2
√

3
ẑ, ẑ × r2 = −1

2
x̂ − 1

2
√

3
ŷ

x̂ × r3 =
1

4

√

2

3
ŷ − 1

2
ẑ, ŷ × r3 = −1

4

√

2

3
x̂ +

1

2
√

3
ẑ, ẑ × r3 =

1

2
x̂ − 1

2
√

3
ŷ

x̂ × r4 = −3

4

√

2

3
ŷ, ŷ × r4 =

3

4

√

2

3
x̂, ẑ × r4 = 0

We calculate the off-diagonal components Ixy, Iyz and Ixz, and let the mass term be a constant.

Ixy = m
∑

α

(x̂ × rα) · (ŷ × rα) = m(0 +
1

4
√

3
− 1

4
√

3
+ 0) = 0

Iyz = m
∑

α

(ŷ × rα) · (ẑ × rα) = m(0 +
1

8

√

2

3
− 1

8

√

2

3
+ 0) = 0

Ixz = m
∑

α

(x̂ × rα) · (ẑ × rα) = m(

√
2

12
−

√
2

24
−

√
2

24
+ 0) = 0

By symmetry, Iyx = Izy = Izx = 0, and the off-diagonal elements are zero. Thus, our chosen
axes are the principal axes. We now find the principal moments of inertia.

Ixx = m
∑

α

(x̂ × rα) · (x̂ × rα) = m
1

16

2

3
+ 2m

(

1

16

2

3
+

1

4

)

+ m
9

16

2

3
= m

Iyy = m
∑

α

(ŷ × rα) · (ŷ × rα) = m

(

1

16

2

3
+

1

3

)

+ 2m

(

1

16

2

3
+

1

12

)

+ m
9

16

2

3
= m

Izz = m
∑

α

(ẑ × rα) · (ẑ × rα) = m
1

3
+ 2m

(

1

4
+

1

12

)

+ 0 = m

Let R be the distance between the points, or, the scale of the arrangement. We chose R to be
1 earlier, but we can extend this calculation to a general tetrahedral arrangement by multiplying
the principal moments of inertia by R2. Thus, the principal axes are x̂, ŷ, ẑ, and the corresponding
principal moments of inertia are each mR2, which is what we wanted to show.

(b) Let the cube with side length R centered at (0, 0, 0) be described by −R
2 ≤ x, y, z ≤ R

2 . We
will show that (x̂, ŷ, ẑ) are the principal axes. Let the cube have a uniform density δ = M

R3 .
First, we compute the off-diagonal inertial moments. Let r(x, y, z) = xx̂+yŷ + zẑ be the vector

from the origin to the point at (x, y, z).
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Ixy =

∫

V
δ(x̂ × r) · (ŷ × r)dV = δ

∫

V
(−zŷ + yẑ) · (zx̂ − xẑ)dV = δ

∫

V
−xydV

But by symmetry, this is zero, and so are the rest of the off-diagonal components. Thus, the
axes we have chosen are the principal axes, and we go to calculate the principal moments.

Ixx =

∫

V
δ(x̂ × r) · (x̂ × r)dV = δ

∫

V
(−zŷ + yẑ) · (−zŷ + yẑ)dV = δ

∫

V
z2 + y2dV

= δ

∫

V
z2 + y2dV = δR

∫ R/2

−R/2

∫ R/2

−R/2
z2 + y2 dzdy = 2δR2

∫ R/2

−R/2
z2dz = 2δR2 1

12
R3 =

1

6
MR2

Similarly, Iyy = Izz = 1
6MR2.

(c) The center of mass of this arrangement is
(−1+1+1+0+0

5 , 0+0+1+0+0
5 , 0+0+0+0+1

5

)

= (1
5 , 1

5 , 1
5).

Our plan of attack is to choose any set of orthogonal axes, and to calculate the tensor matrix I.
The eigenvalues of the matrix are the principal moments of inertia, and the eigenvectors are the
principal axes. Since it contributes only a multiplicative term, we let the mass mα = 1 for all α.

We choose (x̂, ŷ, ẑ) as our axes, and calculate the cross product of each of these with the relative
displacement vectors for the points. First we calculate these new vectors:

r1 =

(

4

5
,−1

5
,−1

5

)

, r2 =

(

−6

5
,−1

5
,−1

5

)

, r3 =

(

4

5
,
4

5
,−1

5

)

r4 =

(

−1

5
,−1

5
,−1

5

)

, r5 =

(

−1

5
,−1

5
,
4

5

)

Then the crossproducts.

x̂ × r1 =
1

5
ŷ − 1

5
ẑ, ŷ × r1 = −1

5
x̂ − 4

5
ẑ, ẑ × r1 =

1

5
x̂ +

4

5
ŷ

x̂ × r2 =
1

5
ŷ − 1

5
ẑ, ŷ × r2 = −1

5
x̂ +

6

5
ẑ, ẑ × r2 =

1

5
x̂ − 6

5
ŷ

x̂ × r3 =
1

5
ŷ +

4

5
ẑ, ŷ × r3 = −1

5
x̂ − 4

5
ẑ, ẑ × r3 = −4

5
x̂ +

4

5
ŷ

x̂ × r4 =
1

5
ŷ − 1

5
ẑ, ŷ × r4 = −1

5
x̂ +

1

5
ẑ, ẑ × r4 =

1

5
x̂ − 1

5
ŷ

x̂ × r5 = −4

5
ŷ − 1

5
ẑ, ŷ × r5 =

4

5
x̂ +

1

5
ẑ, ẑ × r5 =

1

5
x̂ − 1

5
ŷ

Now we calculate entries in the matrix I, using Iij =
∑

α(êi × rα) · (êi × rα).
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Ixx =
2

25
+

2

25
+

17

25
+

2

25
+

17

25
=

8

5

Iyy =
17

25
+

37

25
+

17

25
+

2

25
+

17

25
=

18

5

Izz =
17

25
+

37

25
+

32

25
+

2

25
+

2

25
=

18

5

And the off-diagonal moments.

Ixy =
4

25
− 6

25
− 16

25
− 1

25
− 1

25
=

4

5

Iyz = − 1

25
− 1

25
+

4

25
− 1

25
+

4

25
=

1

5

Ixz =
4

25
− 6

25
+

4

25
− 1

25
+

4

25
=

1

5

Since the IT = I, we have

I =
1
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8 4 1
4 18 1
1 1 18





I used Scientific Python (SciPy) to solve for the eigenvalues and eigenvectors of this matrix.

>>> import scipy; import scipy.linalg

>>> scipy.linalg.eig(1/5. * scipy.array([[8,4,1],[4,18,1],[1,1,18]]))

(array([ 1.31273832+0.j, 4.03274534+0.j, 3.45451633+0.j]),

array([[-0.94401077, 0.30599901, -0.12332182],

[ 0.3254508 , 0.80245031, -0.50015525],

[ 0.05408738, 0.51228712, 0.85710936]]))

Thus, the principal axes are, to three decimal places, −.944x̂ + .305ŷ +−.123ẑ, .325x̂ + .802ŷ +
−.500ẑ, and .054x̂ + .512ŷ + .857x̂, with associated principal moments of inertia 1.313m, 4.033m
and 3.455m.
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