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Exercise 3.1: Deriving Hamilton’s equations
(a) The momentum of the system is given by

p = L(t,0,0) = mi*f
Thus, we have 6(p) = —f>. The Hamiltonian, in terms of p is:

2
TR VRO p
H(t,0,p) = pb(p) = L(t,0.0(p) = ——5 — L(t,0, )
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_p 1o p N2 _1p
= 2ml <m12) mglcos(f) = 572 mglcos(6)

The Hamiltonian equations are given by D = 9o H and Dp = —01H.

mi?
Dp = _alH(t7q7p) = —mglsm(H)

As expected, the first of these is merely a restatement of the relationship between momentum
and velocity.

DY = 82H(t7 qvp) =

(b) The momentum of the system is given by
Dz Co mx
= =0 L(t;x,y; &, 9) = .
p [ - ] L L(t; @, y; 2, 9) [ my ]

Thus, we have & = 2& and ¢ = %. The Hamiltonian, in terms of p is:

H(t;z,y;p) =p- [ ;EZ;; } — L(t;z,y; (pz), Y(py))
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= %(pi +p)) + V(z,y)

The Hamiltonian equations are given by Dq = 0o H and Dp = —01H.
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Dp —LV(z,y) } [ —z — 2y ]
Dp = T = _5H = dg —
P [ Dp, } ' [ — 5V (z,y) —y — a4y

The first pair of these are a restatement of the relationship between momentum and velocity.
The second pair relates the rate of change of momentum with the gradient of the potential energy.

(¢) The momentum of the system is given by

Po » mR20
= =0 L(t;0,0;0,0) = .
p |:p¢:| 2 L(t; 0,60, ) [mRZgbsinQH}
Thus, we have § = &> and ¢ = mﬁnze' The Hamiltonian, in terms of p is:

0(pg)

H(t;0,¢;p) =p- [ b (py)

} — L(t;:6, ¢ 0(pg), p(py))
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The Hamiltonian equations are given by Dq = 0o H and Dp = —01H.

DH i Do
Dq:{w]:aﬁ: T ]
| mR2sin’g

[ 1 .2 cosf
Dp = Dpy = -OH = mRZP5in3g
Dpgy 0

The first pair of these are a restatement of the relationship between momentum and velocity.

Exercise 3.3: Computing Hamilton’s equations
(a) We define H and compute Hamilton’s equations.

(define ((H-part-a m 1 g) H-state)
(let
((theta (coordinate H-state))
(p (momentum H-state)))
(- (/ (square p) (x 2 m (square 1))) (* m g 1 (cos theta)))))

(show-expression
(((Hamilton-equations
(H-part-a ’m ’1 ’g))
(literal-function ’theta) (literal-function ’p)) ’t))



0

DO (t) — Zz%)

glmsin (0 (t)) + Dp (t)

These are the same as in (3.1).

(b) We define H and V' (z,y) and compute Hamilton’s equations.

(define ((H-part-b m V) H-state)
(let
((q (coordinate H-state))
(p (momentum H-state)))
(+ (/ (square p) (* 2 m)) (V (ref q 0) (ref q 1)))))

(define (V x y)
(+ (/ (+ (square x) (square y)) 2) (* (square x) y) (/ (cube y) -3)))

(show-expression
(((Hamilton-equations
(H-part-b ’m V))
(up (literal-function ’x) (literal-function ’y))
(down (literal-function ’p_x) (literal-function ’p_x))) ’t))

0
D (1) - P (t)
Dy () - 2=

These are the same as in (3.1).

(c) We define H and compute Hamilton’s equations.

(define ((H-part-c m R) H-state)
(let ((theta (ref (coordinate H-state) 0))
(p_theta (ref (momentum H-state) 0))
(p_phi (ref (momentum H-state) 1)))
- +
(/ (square p_theta) (* m R R))
(/ (square p_phi) (* m (square (* R (sin theta))))))



(* (/ (*mRR) 2)
(+
(square (/ p_theta (* m R R)))
(square (/ p_phi (* m R R (sin theta))))

)))))

(show-expression
(((Hamilton-equations

(H-part-c ’m ’R))

(up (literal-function ’theta) (literal-function ’phi))

(down (literal-function ’p_theta) (literal-function ’p_phi))) ’t))
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~po(h)
R?m
- Py (1)
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Do () = e @ ()

Dpy (t)

DO (t)

These are the same as in (3.1).

Exercise 3.4: Simple Legendre transforms
(a) We are looking for a function G(y) with the following properties:

y=0F(z), zy=F(z)+Gy), ==0Gy)
The first of these gives us y = a + 2bz. In terms of z, this is x = %(y — a). The second of these

gives us
ry = ax + b + G(y)

G(y) = zy — ax — ba® = zy — zy + bz = ba?
2
g (y—a\T_ 1 o
6= (150) = -
= g(y—a) = 2. SoG(y) = f(y—a)’

We double-check that the third relation is correct: doG(y) = 55
is the function related to F'(z) through a Legendre transform.

(c) Let w = [ Z)}x be the active argument in G(z,y;wg,w,). Consider the relationships

y
between F' and G given in 3.48. The first one gives us:

w=| Y | =gF=| 22t
Wy 3T + 2yy

We can rewrite the active arguments of G in terms of the active arguments of F.



2ywy, — 3wy = 4oyt — 9 = (day — 9)&
2zwy — 3w, = dzyy — 9y = (day — 9)y
The third relationship gives us

3| -o0= i

Solving both of these differential equations gives us:

2
Ywy, wxwy

G = —
dxy — 9 dxy — 9 + flwy)
G= g e )
= — w
dxy — 9 dxy — 9 *
Combining these, we have an expression for G:
yw?p + ﬂf’wz W Wy

Let’s double-check the other expressions, starting with the second one:

M
Yy Wy,
The left side of the equality is
Fw, + Jw, = 2ri? 4+ 3yd + 31y + 2yy* = 2F
We must have G = F' for the two sides to be equal. Let’s expand (4dzy — 9)G:
(4zy — 9)G = yw? + xwz — 3wywy, =

y(4a?i? 4 122279 + 99°) + x(4y29? + 12ydy + 9% — 3(624> 4 9iy + 6yy° + dwyiy)
= xi?(day + 9 — 18) + yy*(4oy + 9 — 18) + @y(12zy + 12zy — 27 — 122y)
= (dzy — 9 F

Which is what we wanted to show. Now consider the last equality. We must show

2 dG/dx
0_80F+80G_|:y2:|+|:dG/dy:|

Consider dG/dx:

dg_d (yired) d( ww,
dx dx dxy — 9 dr \4dzy —9



d ., oy —9)(wy) — (ywi + zwy)(4y) wzwy (4y)
de - (4xy — 9)2 3 ((4559 - 9)2>

(dmy — 95 = (day — 9)(w3) — (g + 2 (4y) + Buwyawy ()

dG
20G 2 2 2,2 2
(4dzy —9) e dryw, — Jw, — 4y w, — dyzw, + 12ywwy

dG
2 2 2,2
(4xy - 9) —_— = —9wy — 4y wy + 12ywxwy

dG
(4zy — 9)2% = —(2yw, — 3wy)?

dG (2yw, — 3wy)?

dr (4xy — 9)?
dG .9
dz
And therefore dG/dxz + ©? = 0. Similarly, the bottom of the equality pair holds as well. All
four relations hold with our choice of G.
Thus, G(z, y; W, wy) = yli;;fg)y — 3‘&;@9 is the function related to F'(z,y;,y) through a Leg-
endre transform.

Exercise 3.5:
The total time derivative of a conserved quantity is zero, so we must have DH (¢, q(t),p(t)) = 0.

DH(t,q(t),p(t)) = doH + 01 H - Dq(t) + 82 H Dp(t)
Hamilton’s equations hold along a solution path:
OoH + 01H - Dq(t) + 02 H - Dp(t) = 0oH + (—Dp(t))Dq(t) + (Dq(t))Dp(t) = doH

If H(t,q(t),p(t)) has no explicit time-dependence, then dyH = 0, DH = 0, and H is thus a
conserved quantity, which is what we wanted to show.



