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Exercise 3.1: Deriving Hamilton’s equations

(a) The momentum of the system is given by

p = ∂2L(t, θ, θ̇) = ml2θ̇

Thus, we have θ̇(p) = p
ml2

. The Hamiltonian, in terms of p is:

H(t, θ, p) = pθ̇(p) − L(t, θ, θ̇(p)) =
p2

ml2
− L(t, θ,

p

ml2
)

=
p2

ml2
−

1

2
ml2

( p

ml2

)2

− mglcos(θ) =
1

2

p2

ml2
− mglcos(θ)

The Hamiltonian equations are given by Dθ = ∂2H and Dp = −∂1H.

Dθ = ∂2H(t, q, p) =
p

ml2

Dp = −∂1H(t, q, p) = −mglsin(θ)

As expected, the first of these is merely a restatement of the relationship between momentum
and velocity.

(b) The momentum of the system is given by

p =

[

px

py

]

= ∂2L(t;x, y; ẋ, ẏ) =

[

mẋ
mẏ

]

Thus, we have ẋ = px

m
and ẏ =

py

m
. The Hamiltonian, in terms of p is:

H(t;x, y; p) = p ·

[

ẋ(px)
ẏ(py)

]

− L(t;x, y; ẋ(px), ẏ(py))

= (px

px

m
+ py

py

m
) −

1

2
m

(

(px

m

)2

+
(py

m

)2
)

+ V (x, y)

=
1

2m
(p2

x + p2
y) + V (x, y)

The Hamiltonian equations are given by Dq = ∂2H and Dp = −∂1H.

Dq =

[

Dx
Dy

]

= ∂2H =

[ px

m
py

m

]
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Dp =

[

Dpx

Dpy

]

= −∂1H =

[

−

d
dx

V (x, y)

−

d
dy

V (x, y)

]

=

[

−x − 2xy
−y − x2 + y2

]

The first pair of these are a restatement of the relationship between momentum and velocity.
The second pair relates the rate of change of momentum with the gradient of the potential energy.

(c) The momentum of the system is given by

p =

[

pθ

pφ

]

= ∂2L(t; θ, φ; θ̇, φ̇) =

[

mR2θ̇

mR2φ̇ sin2θ

]

Thus, we have θ̇ = pθ

mR2 and φ̇ =
pφ

mR2sin2
θ
. The Hamiltonian, in terms of p is:

H(t; θ, φ; p) = p ·

[

θ̇(pθ)

φ̇(pφ)

]

− L(t; θ, φ; θ̇(pθ), φ̇(pφ))

= (pθ

pθ

mR2
+ pφ

pφ

mR2sin2θ
) −

1

2
mR2

(

( pθ

mR2

)2

+
( pφ

mR2sin2θ

)2

sin2θ

)

=
1

2mR2
(p2

θ + p2
φ

1

sin2θ
)

The Hamiltonian equations are given by Dq = ∂2H and Dp = −∂1H.

Dq =

[

Dθ
Dφ

]

= ∂2H =

[

pθ

mR2

pφ

mR2sin2
θ

]

Dp =

[

Dpθ

Dpφ

]

= −∂1H =

[

1

mR2 p2
φ

cosθ

sin3
θ

0

]

The first pair of these are a restatement of the relationship between momentum and velocity.

Exercise 3.3: Computing Hamilton’s equations

(a) We define H and compute Hamilton’s equations.

(define ((H-part-a m l g) H-state)

(let

((theta (coordinate H-state))

(p (momentum H-state)))

(- (/ (square p) (* 2 m (square l))) (* m g l (cos theta)))))

(show-expression

(((Hamilton-equations

(H-part-a ’m ’l ’g))

(literal-function ’theta) (literal-function ’p)) ’t))
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0

Dθ (t) −
p (t)

l2m

glm sin (θ (t)) + Dp (t)













These are the same as in (3.1).

(b) We define H and V (x, y) and compute Hamilton’s equations.

(define ((H-part-b m V) H-state)

(let

((q (coordinate H-state))

(p (momentum H-state)))

(+ (/ (square p) (* 2 m)) (V (ref q 0) (ref q 1)))))

(define (V x y)

(+ (/ (+ (square x) (square y)) 2) (* (square x) y) (/ (cube y) -3)))

(show-expression

(((Hamilton-equations

(H-part-b ’m V))

(up (literal-function ’x) (literal-function ’y))

(down (literal-function ’p_x) (literal-function ’p_x))) ’t))



























0







Dx (t) −
px (t)

m

Dy (t) −
px (t)

m











2y (t) x (t) + Dpx (t) + x (t)

− (y (t))2 + (x (t))2 + Dpx (t) + y (t)































These are the same as in (3.1).

(c) We define H and compute Hamilton’s equations.

(define ((H-part-c m R) H-state)

(let ((theta (ref (coordinate H-state) 0))

(p_theta (ref (momentum H-state) 0))

(p_phi (ref (momentum H-state) 1)))

(- (+

(/ (square p_theta) (* m R R))

(/ (square p_phi) (* m (square (* R (sin theta))))))
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(* (/ (* m R R) 2)

(+

(square (/ p_theta (* m R R)))

(square (/ p_phi (* m R R (sin theta))))

)))))

(show-expression

(((Hamilton-equations

(H-part-c ’m ’R))

(up (literal-function ’theta) (literal-function ’phi))

(down (literal-function ’p_theta) (literal-function ’p_phi))) ’t))































0









Dθ (t) −
pθ (t)

R2m

Dφ (t) −
pφ (t)

R2m (sin (θ (t)))2















Dpθ (t) −
(pφ (t))2 cos (θ (t))

R2m (sin (θ (t)))3

Dpφ (t)





































These are the same as in (3.1).

Exercise 3.4: Simple Legendre transforms

(a) We are looking for a function G(y) with the following properties:

y = ∂0F (x), xy = F (x) + G(y), x = ∂0G(y)

The first of these gives us y = a + 2bx. In terms of x, this is x = 1

2b
(y − a). The second of these

gives us
xy = ax + bx2 + G(y)

G(y) = xy − ax − bx2 = xy − xy + bx2 = bx2

G(y) = b

(

y − a

2b

)2

=
1

4b
(y − a)2

We double-check that the third relation is correct: ∂0G(y) = 1

2b
(y−a) = x. So G(y) = 1

4b
(y−a)2

is the function related to F (x) through a Legendre transform.

(c) Let w =

[

wx

wy

]

be the active argument in G(x, y;wx, wy). Consider the relationships

between F and G given in 3.48. The first one gives us:

w =

[

wx

wy

]

= ∂1F =

[

2xẋ + 3ẏ
3ẋ + 2yẏ

]

We can rewrite the active arguments of G in terms of the active arguments of F .
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2ywx − 3wy = 4xyẋ − 9ẋ = (4xy − 9)ẋ

2xwy − 3wx = 4xyẏ − 9ẏ = (4xy − 9)ẏ

The third relationship gives us

[

ẋ
ẏ

]

= ∂1G =

[

dG/dwx

dG/dwy

]

Solving both of these differential equations gives us:

G =
yw2

x

4xy − 9
− 3

wxwy

4xy − 9
+ f(wy)

G =
xw2

y

4xy − 9
− 3

wxwy

4xy − 9
+ f(wx)

Combining these, we have an expression for G:

G(t;x, y;wx, wy) =
yw2

x + xw2
y

4xy − 9
− 3

wxwy

4xy − 9

Let’s double-check the other expressions, starting with the second one:

[

ẋ
ẏ

] [

wx

wy

]

= G + F

The left side of the equality is

ẋwx + ẏwy = 2xẋ2 + 3ẏẋ + 3ẋẏ + 2yẏ2 = 2F

We must have G = F for the two sides to be equal. Let’s expand (4xy − 9)G:

(4xy − 9)G = yw2
x + xw2

y − 3wxwy =

y(4x2ẋ2 + 12xẋẏ + 9ẏ2) + x(4y2ẏ2 + 12yẋẏ + 9ẋ2) − 3(6xẋ2 + 9ẋẏ + 6yẏ2 + 4xyẋẏ)

= xẋ2(4xy + 9 − 18) + yẏ2(4xy + 9 − 18) + ẋẏ(12xy + 12xy − 27 − 12xy)

= (4xy − 9)F

Which is what we wanted to show. Now consider the last equality. We must show

0 = ∂0F + ∂0G =

[

ẋ2

ẏ2

]

+

[

dG/dx
dG/dy

]

Consider dG/dx:

d

dx
G =

d

dx

(

yw2
x + xw2

y

4xy − 9

)

− 3
d

dx

(

wxwy

4xy − 9

)
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d

dx
G =

(4xy − 9)(w2
y) − (yw2

x + xw2
y)(4y)

(4xy − 9)2
+ 3

(

wxwy(4y)

(4xy − 9)2

)

(4xy − 9)2
dG

dx
= (4xy − 9)(w2

y) − (yw2
x + xw2

y)(4y) + 3wxwy(4y)

(4xy − 9)2
dG

dx
= 4xyw2

y − 9w2
y − 4y2w2

x − 4yxw2
y + 12ywxwy

(4xy − 9)2
dG

dx
= −9w2

y − 4y2w2
x + 12ywxwy

(4xy − 9)2
dG

dx
= −(2ywx − 3wy)

2

dG

dx
= −

(2ywx − 3wy)
2

(4xy − 9)2

dG

dx
= −ẋ2

And therefore dG/dx + ẋ2 = 0. Similarly, the bottom of the equality pair holds as well. All
four relations hold with our choice of G.

Thus, G(x, y;wx, wy) =
yw2

x+xw2
y

4xy−9
− 3

wxwy

4xy−9
is the function related to F (x, y; ẋ, ẏ) through a Leg-

endre transform.

Exercise 3.5:

The total time derivative of a conserved quantity is zero, so we must have DH(t, q(t), p(t)) = 0.

DH(t, q(t), p(t)) = ∂0H + ∂1H · Dq(t) + ∂2HDp(t)

Hamilton’s equations hold along a solution path:

∂0H + ∂1H · Dq(t) + ∂2H · Dp(t) = ∂0H + (−Dp(t))Dq(t) + (Dq(t))Dp(t) = ∂0H

If H(t, q(t), p(t)) has no explicit time-dependence, then ∂0H = 0, DH = 0, and H is thus a
conserved quantity, which is what we wanted to show.
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