6.946 Assignment 7

Dennis V. Perepelitsa

29 October 2006
Gerald Jay Sussman, Jack Wisdom

Exercise 3.8: Sleeping top

Consider the potential energy $U_{p}(\theta)$. It is given that $\theta=0$ is a local minimum or maximum, depending on the value of p. If the second derivative of U_{p} is positive, it is a local minimum, and a local maximum when the second derivative of U_{p} is negative. We compute this second derivative at $\theta=0$:

$$
\begin{gathered}
U_{p}(\theta)=\frac{p^{2}}{2 C}+\frac{p^{2}}{2 A} \tan ^{2} \frac{\theta}{2}+g M R \cos (\theta)=\frac{p^{2}}{2 C}+\frac{p^{2}}{2 A} \frac{\sin ^{2}(\theta / 2)}{\cos ^{2}(\theta / 2)}+g M R \cos (\theta) \\
\frac{d U_{p}(\theta)}{d \theta}=\frac{p^{2}}{2 A} \frac{\cos ^{2}(\theta / 2) 2 \sin (\theta / 2) \cos (\theta / 2) \frac{1}{2}-\sin ^{2}(\theta / 2) 2 \cos (\theta / 2)(-\sin (\theta / 2)) \frac{1}{2}}{\cos ^{4}(\theta / 2)}-g M R \sin (\theta) \\
=\frac{p^{2}}{2 A} \frac{\cos (\theta / 2) \sin (\theta / 2)}{\cos ^{4}(\theta / 2)}-g M R \sin (\theta)=\frac{p^{2}}{2 A} \frac{\sin (\theta / 2)}{\cos ^{3}(\theta / 2)}-g M R \sin (\theta) \\
\frac{d^{2} U_{p}(\theta)}{d \theta^{2}}=\frac{p^{2}}{2 A} \frac{\cos ^{3}(\theta / 2) \cos (\theta / 2) \frac{1}{2}-\sin (\theta / 2) 3 \cos ^{2}(\theta / 2)(-\sin (\theta / 2)) \frac{1}{2}}{\cos ^{6}(\theta / 2)}-g M R \cos (\theta) \\
=\frac{p^{2}}{4 A} \frac{\cos ^{2}(\theta / 2)+3 \sin ^{2}(\theta / 2)}{\cos ^{4}(\theta / 2)}-g M R \cos (\theta) \\
\left.\frac{d^{2} U_{p}(\theta)}{d \theta^{2}}\right|_{\theta=0}=\frac{p^{2}}{4 A} \frac{\cos ^{2}(0)+3 \sin ^{2}(0)}{\cos ^{4}(0)}-g M R \cos (0)=\frac{p^{2}}{4 A}-g M R
\end{gathered}
$$

This is positive (corresponding to a local minimum) when

$$
\frac{p^{2}}{4 A}-g M R>0 \Rightarrow p>\sqrt{4 g M R A}
$$

And negative (corresponding to a local maximum) when $p<\sqrt{4 g M R A}$. Thus, the critical angular velocity $\omega_{c}=\frac{p_{c}}{C}$ above which an axisymmetric top can sleep is given by

$$
w_{c}=\frac{\sqrt{4 g M R A}}{C}
$$

Exercise 3.10: Fun with phase portraits

I decided to investigate a pendulum on a rotating pivot with displacement A and period ω. In Cartesian coordinates, the location and velocity of the pivot point is given by

$$
\begin{gathered}
x_{0}(t)=A \sin (\omega t), \quad y_{0}(t)=A \cos (\omega t) \\
\dot{x}_{0}(t)=A \omega \cos (\omega t), \quad \dot{y}_{0}(t)=-A \omega \sin (\omega t)
\end{gathered}
$$

If the pendulum is a bob of mass m, hanging on a massless string of length l and making an angle θ with the gravity normal, we can describe its position and velocity with

$$
\begin{gathered}
x(t, \theta)=x_{0}(t)+l \sin (\theta), \quad y(\theta, t)=y_{0}(t)+l \cos (\theta) \\
\dot{x}(t, \theta, \dot{\theta})=\dot{x}_{0}(t)+l \cos (\theta) \dot{\theta}, \quad \dot{y}(t, \theta, \dot{\theta})=\dot{y}_{0}(t)-l \sin (\theta) \dot{\theta}
\end{gathered}
$$

The gravitational potential of the pendulum is given by $V_{g}=-m g y(t)$. We note that we can completely describe the pivot and pendulum system with only a single parameter θ and its derivative. A valid Lagrangian for the system is

$$
L=T-V=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g y(t)
$$

We write a procedure that represents this Lagrangian, and then convert it into a Hamiltonian, and then to a state derivative ready for integration.

```
(define ((L-rot-pend m l g A omega) state)
    (let ((theta (coordinate state))
                (thetadot (velocity state))
                (t (time state)))
        (let ((x (+ (* A (sin (* omega t))) (* l (sin theta))))
                (y (+ (* A (cos (* omega t))) (* l (cos theta))))
                (xdot (+ (* A omega (cos (* omega t))) (* l (cos theta) thetadot)))
                (ydot (+ (* -1 A omega (sin (* omega t))) (* -1 l (sin theta) thetadot)))
                )
            (+
            (* . 5 m (+ (square xdot) (square ydot)))
            (* m g y)))))
(define (H-rot-pend-sysder m l g A omega)
    (Hamiltonian->state-derivative
        (Lagrangian->Hamiltonian
            (L-rot-pend m l g A omega))))
```

We setup some plotting procedures:

```
(define ((monitor-p-theta win) state)
    (let ((q ((principal-value :pi) (coordinate state)))
            (p (momentum state)))
            (plot-point win q p)))
(define (rot-pendulum-map m l g A omega)
    (let ((advance (state-advancer H-rot-pend-sysder m l g A omega))
                (map-period (/ :2pi omega)))
            (lambda (theta ptheta return fail)
            (let ((ns (advance
                                    (up 0 theta ptheta)
```

```
        map-period)))
    (return ((principal-value :pi) (coordinate ns))
    (momentum ns))))))
(define win (frame :-pi :pi -10 30))
```

I chose to investigate the surface of section for the following initial conditions $m=1 \mathrm{~kg}, l=$ $1 \mathrm{~m}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}, A=.04 \mathrm{~m}$ and $\omega=5.2 \omega_{0}$, where $\omega_{0}=\sqrt{\frac{g}{l}}$ is the natural frequency of the pendulum.

```
(let ((m 1.)
        (1 1.)
        (g 9.8)
        (A .04))
    (let ((omega0 (sqrt (/ g l))))
        (let ((omega (* 5.2 omega0)))
            (explore-map
            win
            (rot-pendulum-map m l g A omega)
                200))))
```

Some trajectories are plotted in Figures 1 and 2. There is a large chaotic region in the middle range of momenta, with major and minor islands of stability.
Exercise 3.13: Fun with Henon's quadratic map
(a) Consider the Jacobian determinant of the map.

$$
\begin{gathered}
\left|\frac{\partial\left(x^{\prime}, y^{\prime}\right)}{\partial(x, y)}\right|=\left|\begin{array}{cc}
\frac{\partial x^{\prime}}{\partial x} & \frac{\partial x^{\prime}}{\partial y} \\
\frac{\partial y^{\prime}}{\partial x} & \frac{\partial y^{\prime}}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\cos \alpha+2 x \sin \alpha & -\sin \alpha \\
\sin \alpha-2 x \cos \alpha & \cos \alpha
\end{array}\right|= \\
\left(\cos ^{2} \alpha+2 x \cos \alpha \sin \alpha\right)-\left(-\sin ^{2} \alpha+2 x \sin \alpha \cos \alpha\right)=\cos ^{2} \alpha+\sin ^{2} \alpha=1
\end{gathered}
$$

Thus the map preserves area.
(b) We implement that map as a procedure that returns the failure condition when the orbit escapes from the area of interest $-1 \leq x \leq 1,-1 \leq y \leq 1$.

```
(define ((quad-map alpha) x y return fail)
    (let ((xprime (- (* x (cos alpha)) (* (- y (square x)) (sin alpha))))
                (yprime (+ (* x (sin alpha)) (* (- y (square x)) (cos alpha)))))
            (if (or (or (> xprime 1) (< xprime -1)) (or (> yprime 1) (< yprime -1)))
                (fail)
            (return xprime yprime))))
```

(c) We create a frame, and explore the map for different values of α.
(define window (frame -1. 1. -1. 1.))
(explore-map window (quad-map 1.0) 2000)
The Figures below show the map for values of $\alpha=1.2,1.23,1.26,1.29,1.32,1.35$. There is a marked evolution of the map around this parameter region of α. As α evolves, islands of stability form and move outwards until they disappear entirely or escape the main region of stability.

Figure 1: Both plots show several trajectories. On the left, the coordinates range from $-10 \leq p_{\theta} \leq$ 30 and $-\pi \leq \theta \leq \pi$. On the right, the coordinates range from $0 \leq p_{\theta} \leq 20$ and $-\pi \leq \theta \leq \pi$.

Figure 2: An eerie plot of several trajectories. On the left, the coordinates range from $5 \leq p_{\theta} \leq 15$ and $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. On the right is Krotus, the Dark Lord of Fifth East, for comparison.

Figure 3: Both plots show several trajectories. $\alpha=1.2$ and 1.23 on the left and right, respectively.

Figure 4: Both plots show several trajectories. $\alpha=1.26$ and 1.29 on the left and right, respectively.

Figure 5: Both plots show several trajectories. $\alpha=1.32$ and 1.35 on the left and right, respectively.

