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Exercise 3.8: Sleeping top

Consider the potential energy Up(θ). It is given that θ = 0 is a local minimum or maximum,
depending on the value of p. If the second derivative of Up is positive, it is a local minimum, and
a local maximum when the second derivative of Up is negative. We compute this second derivative
at θ = 0:
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This is positive (corresponding to a local minimum) when
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And negative (corresponding to a local maximum) when p <
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Exercise 3.10: Fun with phase portraits

I decided to investigate a pendulum on a rotating pivot with displacement A and period ω. In
Cartesian coordinates, the location and velocity of the pivot point is given by

x0(t) = Asin(ωt), y0(t) = Acos(ωt)

ẋ0(t) = Aωcos(ωt), ẏ0(t) = −Aωsin(ωt)
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If the pendulum is a bob of mass m, hanging on a massless string of length l and making an
angle θ with the gravity normal, we can describe its position and velocity with

x(t, θ) = x0(t) + l sin(θ), y(θ, t) = y0(t) + l cos(θ)

ẋ(t, θ, θ̇) = ẋ0(t) + l cos(θ)θ̇, ẏ(t, θ, θ̇) = ẏ0(t) − l sin(θ)θ̇

The gravitational potential of the pendulum is given by Vg = −mgy(t). We note that we
can completely describe the pivot and pendulum system with only a single parameter θ and its
derivative. A valid Lagrangian for the system is

L = T − V =
1

2
m

(

ẋ2 + ẏ2
)

+ mgy(t)

We write a procedure that represents this Lagrangian, and then convert it into a Hamiltonian,
and then to a state derivative ready for integration.

(define ((L-rot-pend m l g A omega) state)

(let ((theta (coordinate state))

(thetadot (velocity state))

(t (time state)))

(let ((x (+ (* A (sin (* omega t))) (* l (sin theta))))

(y (+ (* A (cos (* omega t))) (* l (cos theta))))

(xdot (+ (* A omega (cos (* omega t))) (* l (cos theta) thetadot)))

(ydot (+ (* -1 A omega (sin (* omega t))) (* -1 l (sin theta) thetadot)))

)

(+

(* .5 m (+ (square xdot) (square ydot)))

(* m g y)))))

(define (H-rot-pend-sysder m l g A omega)

(Hamiltonian->state-derivative

(Lagrangian->Hamiltonian

(L-rot-pend m l g A omega))))

We setup some plotting procedures:

(define ((monitor-p-theta win) state)

(let ((q ((principal-value :pi) (coordinate state)))

(p (momentum state)))

(plot-point win q p)))

(define (rot-pendulum-map m l g A omega)

(let ((advance (state-advancer H-rot-pend-sysder m l g A omega))

(map-period (/ :2pi omega)))

(lambda (theta ptheta return fail)

(let ((ns (advance

(up 0 theta ptheta)
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map-period)))

(return ((principal-value :pi) (coordinate ns))

(momentum ns))))))

(define win (frame :-pi :pi -10 30))

I chose to investigate the surface of section for the following initial conditions m = 1 kg, l =

1 m, g = 9.8 m/s2, A = .04 m and ω = 5.2 ω0, where ω0 =
√

g
l

is the natural frequency of the

pendulum.

(let ((m 1.)

(l 1.)

(g 9.8)

(A .04))

(let ((omega0 (sqrt (/ g l))))

(let ((omega (* 5.2 omega0)))

(explore-map

win

(rot-pendulum-map m l g A omega)

200))))

Some trajectories are plotted in Figures 1 and 2. There is a large chaotic region in the middle
range of momenta, with major and minor islands of stability.
Exercise 3.13: Fun with Henon’s quadratic map

(a) Consider the Jacobian determinant of the map.
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Thus the map preserves area.
(b) We implement that map as a procedure that returns the failure condition when the orbit

escapes from the area of interest −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

(define ((quad-map alpha) x y return fail)

(let ((xprime (- (* x (cos alpha)) (* (- y (square x)) (sin alpha))))

(yprime (+ (* x (sin alpha)) (* (- y (square x)) (cos alpha)))))

(if (or (or (> xprime 1) (< xprime -1)) (or (> yprime 1) (< yprime -1)))

(fail)

(return xprime yprime))))

(c) We create a frame, and explore the map for different values of α.

(define window (frame -1. 1. -1. 1.))

(explore-map window (quad-map 1.0) 2000)

The Figures below show the map for values of α = 1.2, 1.23, 1.26, 1.29, 1.32, 1.35. There is a
marked evolution of the map around this parameter region of α. As α evolves, islands of stability
form and move outwards until they disappear entirely or escape the main region of stability.
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Figure 1: Both plots show several trajectories. On the left, the coordinates range from −10 ≤ pθ ≤
30 and −π ≤ θ ≤ π. On the right, the coordinates range from 0 ≤ pθ ≤ 20 and −π ≤ θ ≤ π.
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Figure 2: An eerie plot of several trajectories. On the left, the coordinates range from 5 ≤ pθ ≤ 15
and −π

2
≤ θ ≤ π

2
. On the right is Krotus, the Dark Lord of Fifth East, for comparison.
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Figure 3: Both plots show several trajectories. α = 1.2 and 1.23 on the left and right, respectively.
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Figure 4: Both plots show several trajectories. α = 1.26 and 1.29 on the left and right, respectively.
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Figure 5: Both plots show several trajectories. α = 1.32 and 1.35 on the left and right, respectively.
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