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Exercise 5.32: Hierarchical Jacobi coordinates

(a) Canonical heliocentric coordinates

The canonical heliocentric transformation singles out the center of mass of the system. The other
coordinates are computed with respect to this coordinate. Specifically, the relationships between
the elements of (x′

0, . . . , x
′

n−1) and (x0, . . . , xn−1) are

x′

0 = X =

∑i=n−1

i=0
mixi

∑i=n−1

i=0
mi

x′

i = xi − x0, for i > 0 (1)

We want to construct an F2-type generating function that relates the relationship between the
transformed and original coordinates. Using x′ = ∂2F2(t;x; p′), we have
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A simultaneous solution to these n differential equations, assuming no crossterms depending
purely on the p′ (that is, we set all the integration constants to zero), is

F2(t; q; p
′) = p′0X +

i=n−1
∑

i=1

p′i(xi − x0)

From this, we can calculate the relationship between the original and transformed momenta.
For an F2-type generating function, these are given by p = ∂1F2(t;x; p′).
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Where we have used the fact that d
dxi

(
Pi=n−1

i=0
mixi

M

)

= mi

M
, for M =

∑i=n−1

i=0
mi. We have

determined how the momenta transform.
Let’s determine the forms of T and V in this new set of coordinates, starting with the potential

energy. We want to find the form of (xi − xj), which are the arguments taken by the potential
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function f , in the new coordinate system. We note that, if i 6= 0, xi − xj = (x′

i + x0)− (x′

j + x0) =
x′

i − x′

j for all pairs i < j. When i = 0 < j, we have x0 − xj = (x0 − x′

j − x0) = x′

j.
The potential energy is therefore given by

V (x0, . . . , xn−1) =
∑

i<j

fij(|xi − xj|) =
∑

i=0<j

f0j(|x0 − xj |) +
∑

0<i<j

fij(|xi − xj|)

=
∑

i=0<j

f0j(|x
′

j |) +
∑

0<i<j

fij(|x
′

i − x′

j |) = V (x′

0, . . . , x
′

n−1)

Which is in terms of the coordinates with i > 0 only. This is to be expected, since the potential
energy does not depend on the center of mass - only on the relative positions of the particles. (For
example, if the potential energy V were the Coulomb potential of many moving charges particles,
the position of the center of mass should not enter the equation.)

The kinetic enery is

T (p0, . . . , pn−1) =
i=n−1
∑

i=0

p2
i

2mi

=
p2
0

2m0

+
i=n−1
∑

i=1

p2
i

2mi

=

(

m0p
′

0

1

M
−

i=n−1
∑

i=1

p′i

)2

1

2m0

+
i=n−1
∑

i=1

1

2mi

(mi

M
[p′0] + [p′i]

)2

This form produces combinations of crossproducts p′ip
′

j.
1 That is, in the {p′0, . . . , p

′

n−1} basis,
consider the quadratic form that is the momentum. The associated matrix is not diagonal. This is
not ideal for a Hamiltonian; we prefer that the kinetic energy be a sum of squares of momenta.

So we consider another type of transformation.

(b) Jacobi coordinates

This time, let the new coordinates be defined in terms of the old ones as follows:

x′

0 = Xn−i

x′

i = xi − Xi−1, for i > 0 (2)

Where the Xi are the center of mass of the first i + 1 particles, and Mi is the sum of the mass
of the first i + 1 particles.

Xi =
1

Mi

j=i
∑

j=0

mjxj, Mi =

j=i
∑

j=0

mj

That is, Xi can be said to be the “increasingly inclusive” center of mass.
Again, we want to construct an F2-type generating function that relates the relationship between

the transformed and original coordinates. Using x′ = ∂2F2(t;x; p′), we have

1The exception here is the n = 2 case, in which the heliocentric and Jacobi transformations are equivalent. But

in general, the cross terms do not cancel.
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Again, setting the integration constants to zero, a solution to these n differential equations is

F2(t;x; p′) = p′0Xn−1 +
i=n−1
∑

i=1

p′i(xi − Xi−1)

= p′0Xn−1 +

i=n−1
∑

i=1

p′ixi −

i=n−1
∑

i=1

p′iXi−1

Since this is an F2-type generating function, we can now obtain an expression for the relationship
between the original and transformed momenta. These are given by p = ∂1F2(t;x; p′). Let’s
calculate a few derivatives we’ll need later.

d

dxj

(Xn−1) =
mj

M

d

dxj

(

i=n−1
∑

i=1

p′iXi−1

)

=

i=n−1
∑

i=j+1

p′imj

1

Mi

= mj

i=n−1
∑

i=j+1

p′i
1

Mi

The index of the sum on the most recent line starts at i = j + 1 because that is the point at
which Xi−1 begins to depend on xj . Thus, the momenta, in terms of the Jacobi coordinates, are
given by
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Let’s determine the form of the kinetic energy T in the new coordinates. We see that from above
that the old coordinates (p0, . . . , pn−1) can each be expressed as a polynomial in (p′0, . . . , p

′

n−1) of
degree one. Thus, the kinetic energy, which is a sum of squares of the old coordinates, is a degree
two polynomial in the new coordinates.

T (p′0, . . . , p
′

n−1) =
1

2m0

(

p0(p
′

0, . . . , p
′

n−1)
)2

+ . . . +
1

2mn−1

(

pn−1(p
′

0, . . . , p
′

n−1)
)2

To find the new form for T , we collect the coefficients of on any p′ip
′

j term. Let’s start with the

[p′i]
2 terms, specifically with [p′0]

2. Referring back to (2), we see that the contribution from each

pi(p
′

0, . . . , p
′

n−1) is
m2

i

M2

n−1

[p′0]
2, and thus the [p′0]

2 term is
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i=n−1
∑

i=0

1

2mi

(

m2
i

M2
n−1

[p′0]
2

)

=
1

2M2
n−1

[p′0]
2

i=n−1
∑

i=0

mi =
1

2Mn−1

[p′0]
2

Now let’s find the coefficient of the [p′i]
2 term for i 6= 0. The coefficient in the p2

j term for j < i

is
(

−
mj

Mi−1

)2

. The coefficient of [p′i]
2 in p2

i is (1)2, and pj does not depend on pi for i > j. Thus,

the [p′i]
2 term is

1

2mi

[p′i]
2 +

j=i−1
∑

j=0

1

2mj

(

mj

Mi−1

p′i

)2

=
1

2mi

[p′i]
2 +

1

2M2
i−1

[p′i]
2

j=i−1
∑

j=0

mj

=
1

2mi

[p′i]
2 +

1

2Mi−1

[p′i]
2 =

1

2m′

i

[p′i]
2

Where m′

i is the ith reduced mass defined by 1

m′

i

= 1

Mi−1
+ 1

mi
.

Let’s determine the coefficients of the cross-products p′ip
′

j for 0 ≤ i < j ≤ n − 1. Consider the
case when i = 0.

Every pk contains a p′0 term, but only those up to k = j contain a p′j term. The product of the

coefficients for k < j is 2
(

mk

Mn−1

)(

− mk

Mj−1

)

, and from k = j, the product is 2
(

mj

Mn−1

)

(1). Summing

these, we get the p′0p
′

j term in the kinetic energy

1

2mj

2

(

mj

Mn−1

)

[p′0p
′

j] +

k=j−1
∑

k=0

1

2mk

2

(

−
mk

Mn−1

mk

Mj−1

)

[p′0p
′

j]

=
1

Mn−1

[p′0p
′

j] −
1

Mn−1

[p′0p
′

j ]

k=j−1
∑

k=0

mk

Mj−1

= 0

Thus, this cross-term cancels out. Now let’s consider the case when 0 < i < j. The contribution
to the coefficient of p′ip

′

j from a given p2
k only exists when k ≤ i. If k < i, the coefficient in the

polynomial p2
k is 2

(

− mk

Mi−1

)(

− mk

Mj−1

)

. If k = i, the coefficient is 2 (1)
(

− mi

Mj−1

)

. Summing these,

the p′ip
′

j term in the kinetic energy is

1

2mi

(

−
mi

Mj−1

)

[p′ip
′

j ] +

k=i−1
∑

k=0

1

2mk

(

mk

Mi−1

mk

Mj−1

)

[p′ip
′

j ]

= −
1

2Mj−1

[p′ip
′

j] +
1

2Mj−1

[p′ip
′

j]
k=i−1
∑

k=0

mk

Mi−1

= 0

Again, the cross-terms cancel. The form of the kinetic energy in the (p′0, . . . , p
′

n−1) coordinate
frame is, as we have shown,

T (p′0, . . . , p
′

n−1) =
1

2Mn−1

[p′0]
2 +

i=n−1
∑

i=1

1

2m′

i

[p′i]
2,

1

m′

i

=
1

Mi−1

+
1

mi
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This is a nice form which depends only on the squares of the momenta. The first term is the
kinetic energy of the center of mass, and the other terms are the relative kinetic energy between
the nth particle and the center of mass of the particles with index less than n.

Let’s investigate the form of the potential energy V in the new coordinate frame. In particular,
we want to investigate the dependence of the arguments (xi − xj), for i < j, that the potential
function f takes, in terms of the new coordinates. To construct these, we note that if we can find
the forms corresponding to (xi −xi+1) for all i, then we can generate any (xi −xj) form with sums
of these.

Let’s begin. By the definition of x′

1, we have x0 − x1 = x′

1. Now consider the definition of any
x′

i and x′

i+1, below, for 0 < i < n − 1.

Mi−1x
′

i = Mi−1xi − m0x0 − . . . − mi−1xi−1

Mix
′

i+1 = Mixi+1 − m0x0 − . . . − mixi

Taking the difference, we have

Mix
′

i+1 − Mi−1x
′

i = Mixi+1 − Mi−1xi − mixi

x′

i+1 −
Mi−1

Mi

x′

i = xi+1 − xi

We note that x′

0 never enters the equations, except as an intermediary that is later cancelled.
Thus, we can write any of the arguments (xi − xj) to f (and thus derive the potential energy V )
as a linear combination of x′

1, . . . , x
′

n−1 terms alone. Again, this makes sense, because the potential
energy depends only on the relative positions of the bodies.

Let’s generalize this practice of computing partial centers of mass while preserving the form of
the kinetic energy.

(c) Hierarchical Jacobi coordinates

We introduce the linking transformation Ljk, with j 6= k, that leaves the position, momentum and
mass of all elements for which j, k 6= i the same, and transforms the mass, momentum and position
of the kth and jth particles as follows:

x′

j = xk − xj, m′

j =

(

1

mj

+
1

mk

)

−1

=
mjmk

mj + mk

x′

k =
mjxj + mkxk

mj + mk

, m′

k = mj + mk (3)

Let’s consider what the transformed momenta must look like. We find that we can derive these
from the definitions in (3) above.

p′k = m′

kx
′

k = (mk + mk)
mjxj + mkxk

mj + mk

= mjxj + mkxk = pj + pk

p′j = m′

jx
′

j =
mjmk

mj + mk

(xk − xj) =
mjpk − mkpj

mj + mk
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Next, we want to show that this form of transformation preserves the sum of squares form of
the kinetic energy. Showing that a similar form of the kinetic energy leads to the original one is
straightforward. The terms of the energy that depend on [p′i]

2 = p2
i for k, j 6= i are the same. So

we only consider the p′j and p′k terms.

1

2m′

j

[p′j ]
2 +

1

2m′

k

[p′k]
2 =

1

2m′

j

(

mjpk − mkpj

mj + mk

)2

+
1

2m′

k

(pj + pk)
2

=
1

2m′

j

(

m2
jp

2
k − 2mjmkpjpk + m2

kp
2
j

M2

)

+
1

2M

(

p2
j + 2pjpk + p2

k

)

Where we have used M = m′

j = mj + mk. Below, we collect terms and use the fact that
1

m′

j

= 1

mj
+ 1

mk
.

=
p2

k

2

(

1

m′

j

m2
j

M2
+

1

M

)

+
p2

j

2

(

1

m′

j

m2
k

M2
+

1

M

)

+ pjpk

(

−mjmk

m′

jM
2

+
1

M

)

=
p2

k

2

(

m2
j

mjM2
+

m2
j

mkM2
+

1

M

)

+
p2

j

2

(

m2
k

mjM2
+

m2
k

mkM2
+

1

M

)

+pjpk

(

−mjmk

mjM2
+

−mjmk

mkM2
+

1

M

)

=
p2

k

2

(

m2
jmk + m3

j + mjmkM

mjmkM2

)

+
p2

j

2

(

m3
k + m2

kmj + mjmkM

mjmkM2

)

+pjpk

(

−mjm
2
k − m2

jmk + mkmjM

mkmjM2

)

=
p2

k

2

(

mjmk + m2
j + mkM

mkM2

)

+
p2

j

2

(

m2
k + mkmj + mjM

mjM2

)

+ pjpk

(

−mk − mj + M

M2

)

=
p2

k

2

(

m2
k + 2mjmk + m2

j

mkM
2

)

+
p2

j

2

(

m2
j + m2

k + 2mkmj

mjM2

)

=
p2

k

2

(mj + mk)
2

mkM
2

+
p2

j

2

(mj + mk)
2

mjM2
=

p2
k

2

(

1

mk

)

+
p2

j

2

(

1

mj

)

(4)

Which is what we wanted to show.
We call this a “linking” transformation because it stops the distinsguishing the individual po-

sition of two particles, and instead treats them as a center of mass of and a relative displacement.
As we have shown above, this transformation preserves the sum of squares form of the energy.

Of course, we’d like to ensure that there is a single coordinate that represents the center of mass
of the system after a series of transformations. The requirement that there be a single identifiable
center of mass term is that the composition of linking transformations link a single specific element
with every other one. This way, the k-coordinate on the last transformation Lj,k will be the
transformed coordinate that corresponds to the center of mass of the system. In a way, it’s a
“continued weighted averaging” or the coordinates.

The Jacobi transformation has a single center of mass coordinate, and all the other coordinates
are decoupled positions relative to an increasingly inclusive center of mass. Thus, any individual
coordinate is expressed as the relative difference between all the ones before it and this, along with
the center of mass, is enough to specify any configuration.
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We can express the Jacobi transformation as a composition of linking transformations. We
want to pick a center of mass element, x′

0, and let the other elements x′

i to be the relative distance
between their original position xi and the center of mass up to that point. Thus, a series of linking
transformations which build x′

0 as the successively more inclusive center of mass, and transforms
x′

i to be the relative distance between xi and the new (slightly more inclusive) center of mass x′

0.
We see that this can be done with the following series of linking transformations:

(Ln−1,0 ◦ . . . ◦ L1,0) (m0, . . . ,mn−1;x0, . . . , xn−1; p0, . . . , pn−1)

= (m′

0, . . . ,m
′

n−1;x
′

0, . . . , x
′

n−1; p
′

0, . . . , p
′

n−1)

We now explicitly construct the coordinate transforms for the six body problem in the project
statement. There are six point particles, divided into left and right triple systems. We denote
which triple system a particle is part of with an “L” or “R” subscript, respectively. Each triple
system is a binary system (to which we give the subscript “B1” or “B2”), plus a third body (“3”).
For example, the first particle of the binary system in the triple system on the left is “LB1” with
position, momentum and mass xLB1, pLB1 and mLB1, respectively.

We want to link the particles in each binary system, then link these compositions to the third
particle in each triple system, and finally, link these two compositions. Thus, at the end of the
transformation, we hope to end up with six coordinate subscripts - “M” for the composition of the
entire system, “m” for the relative offset between the two triple systems, L and R for the relative
offset of either third body from the binaries, and l and r for the relative coordinate within the
binary arrangement.

Let our initial coordinates be

(xLB1, xLB2, xL3, xRB1, xRB2, xR3; pLB1, . . . , pR3;mLB1, . . . ,mR3)

We first want to link the two binaries with a LLB1,LB2 ◦LRB1,RB2 transformation. This changes
our subscripts to

LLB1,LB2 ◦ LRB1,RB2(LB1, LB2, L3, RB1, RB2, R3) = (l, LB,L3, r, RB,R3)

Where LB and RB above are the centers of mass of the binaries. Next, we use LLB,L3 ◦LRB,R3

to link the composite binary systems with the third element of the triple systems. This changes
our subscripts to

LLB,L3 ◦ LRB,R3(l, LB,L3, r, RB,R3) = (l, L,ML, r, R,MR)

Where ML and MR above are the centers of mass of the triple systems. Finally, we link these
with LML,mR

to arrive at

LML,MR
(l, L,ML, r, R,MR) = (l, L,m, r,R,M)

Following these compositions of transformations, we can find the Jacobi coordinates, mass and
momenta for the particles. The first two transformations give us

xLB =
mLB1xLB1 + mLB2xLB2

mLB1 + mLB2

, pLB = pLB1 + pLB2, mLB = mLB1 + mLB2
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xl = xLB2 − xLB1, pl =
mLB1pLB2 − mLB2pLB1

mLB1 + mLB2

,
1

ml

=
1

mLB1

+
1

mLB2

xRB =
mRB1xRB1 + mRB2xRB2

mRB1 + mRB2

, pRB = pRB1 + pRB2, mRB = mRB1 + mRB2

xr = xRB2 − xRB1, pr =
mRB1pRB2 − mRB2pRB1

mRB1 + mRB2

,
1

mr

=
1

mRB1

+
1

mRB2

The “r” and “l” terms will not be affected from here on out. Next, we apply the linking
transformation to the third element of each triplet and the linked center of mass of their respective
triplet. The new “ML”,“L” and “MR”,“R” coordinates in terms of “LB”,“L3” and “RB”,“R3”,
respectively, are

xML
=

mLBxLB + mL3xL3

mLB + mL3

, pML
= pLB + pL3, mML

= mLB + mL3

xL = xLB − xL3, pL =
mLBpL3 − mL3pLB

mL3 + mLB

,
1

mL

=
1

mLB

+
1

mL3

xMR
=

mRBxRB + mR3xR3

mRB + mR3

, pMR
= pRB + pR3, mMR

= mRB + mR3

xR = xRB − xR3, pR =
mRBpR3 − mR3pRB

mR3 + mRB

,
1

mR

=
1

mRB

+
1

mR3

We keep the relative “L” and “R” coordinates, and merge “ML”, “MR” coordinates into a
center of mass term “M ′′ and relative term “m′′, as follows:

xM =
mML

xML
+ mMR

xMR

mML
+ mML

, pM = pML
+ pMR

, mM = mML
+ mMR

xm = xML
− xMR

, pm =
mML

pMR
− mMR

pML

mML
+ mMR

,
1

mm

=
1

mML

+
1

mMR

We know that the composition of linking transformations preserves the sum of squares form of
the kinetic energy, but let’s illustrate it below for good measure.

Using the property derived in (4):

T =

(

1

2mLB1

p2
LB1 +

1

2mLB2

p2
LB2

)

+
1

2mL3

p2
L3 +

(

1

2mRB1

p2
RB1 +

1

2mRB2

p2
RB2

)

+
1

2mR3

p2
R3

T =
1

2ml

p2
l +

(

1

2mLB

p2
LB +

1

2mL3

p2
L3

)

+
1

2mr

p2
r +

(

1

2mRB

p2
RB +

1

2mR3

p2
R3

)

T =
1

2ml

p2
l +

1

2mL

p2
L +

(

1

2mML

p2
ML

)

+
1

2mr

p2
r +

1

2mR

p2
R +

(

1

2mMR

p2
MR

)

T =
1

2ml

p2
l +

1

2mL

p2
L +

1

2mm

p2
m +

1

2mr

p2
r +

1

2mR

p2
R +

1

2mM

p2
M

Which is what we wanted to show.
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