8.04 Final Review

Dennis V. Perepelitsa

19 March 2006
Professor Vladan Vuletic

Schröedinger Equation in one dimension. Piecewise constant potentials. Boundary conditions.

In one dimension, the (time-dependent, time-independent) Schröedinger Equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}, \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x)
$$

Very generally, a wave packet moving in the positive x -direction where the constant potential is $(0, V)$ has the forms:

$$
e^{i k x}, \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}}, \quad e^{i q x}, \quad q=\sqrt{\frac{2 m(E-V)}{\hbar^{2}}}
$$

If $V>E$, the region is classically forbidden and the wavepacket instead falls off as

$$
e^{-\kappa x}, \quad \kappa=\sqrt{\frac{2 m(V-E)}{\hbar^{2}}}
$$

Wavepackets are reflected (coefficient R, opposite direction) and transmitted (coefficient T, same direction) at each boundary. Furthermore, at each boundary, the solutions to $\Psi(x)$ and $\frac{d \Psi(x)}{d x}$ must match up.

We define the probability current, or flux:

$$
J(x, t)=\frac{\hbar}{2 i m}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\frac{\partial \psi^{*}}{\partial x} \psi\right)
$$

If there is no time dependence, the flux is constant across all boundaries. In the case of negative energies (a particle is bound), the possible energies are quantized. Specifically, for a particle with the $n^{\text {th }}$ bound energy level travelling along a complete path, the Wilson-Sommerfeld quantization rule gives:

$$
\oint p d x=n h
$$

Potential Step: $V(x)=0, x<0$ and $V(x)=V_{0}, x>0$.

$$
\Psi(x)= \begin{cases}e^{i k x}+R e^{-i k x}, J=\frac{\hbar k}{m}\left(1-|R|^{2}\right) & x<0 \\ T e^{i q x}, \quad J=\frac{\hbar q}{m}|T|^{2} & x>0\end{cases}
$$

Equality of $\Psi(x)$ and $\frac{d \Psi(x)}{d x}$ from either side of $x=0$ gives us $1+R=T$ and $i k(1-R)=i q T$, respectively.

Potential Well: $V(x)=-V_{0},-a<x<a$ and $V(x)=0$ otherwise.

$$
\Psi(x)= \begin{cases}e^{i k x}+R e^{-i k x} & x<-a \\ A e^{i q x}+B e^{-i q x} & |x|<a \\ T e^{i k x} & x>a\end{cases}
$$

Potential Barrier: $V(x)=V_{0},-a<x<a$ and $V(x)=0$ otherwise.

$$
\Psi(x)= \begin{cases}e^{i k x}+R e^{-i k x} & x<-a \\ A e^{-\kappa x}+B e^{\kappa x} & |x|<a \\ T e^{i k x} & x>a\end{cases}
$$

Attractive Delta Potential: $V(x)=-\frac{\hbar^{2} \lambda}{2 m a} \delta(x)$

$$
\Psi(x)= \begin{cases}A_{0} e^{i k x}+A e^{-i k x} & x<0 \\ B e^{i k x} & x>0\end{cases}
$$

Equating $\Psi(x)$, we have $A_{0}+A=B$, but because of the discontinuity of the derivative, we have $i k\left(A_{0}-A\right)-i k B=\Psi(0)$.

Time evolution of the wavefunction. Decomposition into Eigenstates.

A wavefunction $\Psi(x)$ can be decomposed into some series of normalized eigenstates:

$$
\Psi(x)=\sum_{n=0}^{\infty} c_{n} \psi_{n}(x), \quad c_{n}=\int_{-\infty}^{\infty} \psi_{n}(x)^{*} \Psi(x) d x, \quad \sum_{n=0}^{\infty} c_{n}^{2}=1, \quad \int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1
$$

If the particle is bound in a box of length a, then we can write:

$$
\Psi(x)=\sum_{n=0}^{\infty} A_{n} u_{n}(x), \quad u_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(n \pi \frac{x}{a}\right), \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}
$$

Each eigenfunction with an associated energy E_{n} can be given a time evolution:

$$
\psi_{n}(x, t)=\psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

If the particle is in free space, the wavefunction in momentum space may also be given a time evolution:

$$
\phi(p, t)=\phi(p, 0) e^{-\frac{p^{2}}{2 m} \frac{t}{\hbar}}
$$

The eigenstates of the momentum operator are simultaneous eigenstates of energy (in free space):

$$
\hat{p} u_{p}(x)=\frac{\hbar}{i} \frac{\partial u_{p}(x)}{\partial x}=p u_{p}(x), \quad u_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

Harmonic Oscillator (Wavefunction and Operator approaches).

Has a potential of the form $V(x)=\frac{1}{2} k x^{2}$, and we let $\omega=\sqrt{\frac{k}{m}}$. Has energy of the form

$$
E_{n}=\left(n+\frac{1}{2}\right) \omega \hbar, \quad n=0,1,2, \ldots
$$

And eigensolutions of the form (here $f_{n}(x)$ is an $n^{t h}$ degree polynomial):

$$
\psi_{n}(x)=f_{n}(x) e^{-\frac{x^{2}}{2 a^{2}}}, \text { valid for all } x
$$

See below for some treatment of the Operator Method. Note that the $\mid 0>$ state is such that $\hat{A} \mid 0>=0$, and $H\left|0>=\frac{1}{2} \hbar \omega\right| 0>$. A properly normalized eigenket is

$$
\left|n>=\frac{1}{\sqrt{n!}}\left(A^{+}\right)^{n}\right| 0>
$$

If our eigenkets are properly normalized, then $\langle n \mid m\rangle=\delta_{n, m}$. If they are not, then $\langle n \mid n\rangle$ $=n!$. To return back to the wavefunction, we have (for $n=0$, for example):

$$
<x \left\lvert\, 0>=\hat{A} \psi_{0}(x)=\left(m \omega x+\hbar \frac{d}{d x}\right) \psi_{0}(x)=0 \Rightarrow \psi_{0}(x)=C e^{-\frac{m \omega x^{2}}{2 \hbar}}\right., C=\left(\frac{m \omega}{\hbar \pi}\right)^{\frac{1}{4}}
$$

Operator Algebra and Commutators. Dirac notation.

Some common operators:

$$
\hat{x}=\hbar i \frac{d}{d p}, \quad \hat{p}=\frac{\hbar}{i} \frac{d}{d x}, \quad \hat{H}=\frac{\hat{p}^{2}}{2 m}+V(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x}+V(x)
$$

We also have an energy lowering operator \hat{A} and an energy raising operator $\hat{A^{+}}$, such that:

$$
\hat{H}=\hbar \omega\left(\hat{A^{+}} \hat{A}+\frac{1}{2}\right), \quad\left(\hat{A}, \hat{A^{+}}\right)=\sqrt{\frac{m \omega}{2 \hbar}} x \pm i \frac{p}{\sqrt{2 m \omega \hbar}}
$$

With properties that are, in the case of the Harmonic Oscillator:

$$
\hat{A}|n>=\sqrt{n}| n-1>, \quad \hat{A^{+}}|n>=\sqrt{n+1}| n+1>
$$

The commutator of \hat{A} and \hat{B} is:

$$
[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}
$$

\hat{A} and \hat{B} are said to commute if $[\hat{A}, \hat{B}]=0$. Commutators have all sorts of intuitive properties. Some important commutator results are $[\hat{x}, \hat{p}]=i \hbar$, and $\left[\hat{A}, \hat{A^{+}}\right]=1$.

TODO: (need more here about Hermitians, conjugate adjoints and how they work backwards on dirac notation etc.)

TODO: Dirac notation

Expected Values and Uncertainty.

The Heisenberg Uncertainty relation is

$$
\Delta x \Delta k>\frac{1}{2}, \quad \Delta x \Delta p \geq \frac{\hbar}{2}
$$

The expected value of an operator \hat{A} over a function $\psi(x)$ is

$$
<A\rangle=<A|\psi| A\rangle=\int_{-\infty}^{\infty} \psi(x)^{*} A \psi(x) d x
$$

In general,

$$
(\Delta A)_{\psi}^{2}(\Delta B)_{\psi}^{2} \geq \frac{1}{4}<i[\hat{A}, \hat{B}]>_{\psi}^{2}
$$

Angular Momentum Formalism and Operators

We can express the Schröedinger Equation in spherical coordinates,

$$
\left(-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial r^{2}}+\frac{\hat{L}^{2}}{2 M r^{2}}+V(r)\right)(r \psi)=E(r \psi)
$$

We also have angular momentum operators in each direction $\hat{L_{x}}, \hat{L_{y}}, \hat{L_{z}}$. We can define

$$
\hat{L}^{2}={\hat{L_{x}}}^{2}+{\hat{L_{y}}}^{2}+{\hat{L_{z}}}^{2}
$$

However, only one of the momentum operators and \hat{L}^{2} can have simultaneous eigenfunctions. Let this be \hat{L}_{z}. (Then, by rotational symmetry, $\left\langle L_{x}\right\rangle=\left\langle L_{y}\right\rangle=0$.) We also introduce a lowering $\hat{L_{+}}$and raising $\hat{L_{-}}$operators that act to change m such that

$$
L_{ \pm}=L_{x} \pm i L_{y}, \quad L_{ \pm}|l, m>=\hbar \sqrt{(l \mp m)(l \pm m+1)}| l, m \pm 1>
$$

Note the following commutator properties:

$$
\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}, \quad\left[L^{2}, L_{i}\right]=0, \quad\left[L^{2}, L_{ \pm}\right]=0
$$

Let l be the angular momentum quantum number, and m the magnetic quantum number. If we let our eigenkets be $|l, m\rangle$, then

$$
\hat{L}^{2}\left|l, m>=\hbar^{2} l(l+1)\right| l, m>, \quad \hat{L_{z}}|l, m>=\hbar m| l, m>
$$

For a spherically symmetrical $V(\rho)$, the solutions look like $\Psi(\rho, \theta, \phi)=R(\rho) Y(\theta, \phi)$. For a given energy level $n, 0 \geq l \geq n-1$, and $-l \geq m \geq l . \quad Y(\theta, \phi)$ typically has terms of order $\sin ^{|m|}(\theta)$, $\cos ^{(l-|m|)}(\theta)$ and $e^{i \phi m}$.

See the formula sheet for some $Y_{m l}(\theta, \phi)$.

Hydrogen Atom, Quantum Numbers, Energy Levels

This problem is characterized by $V(r)=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}$. (needs to be populated)

