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Abstract

We present the path integral formulation of quantum mechanics and demon-
strate its equivalence to the Schrodinger picture. We apply the method to the
free particle and quantum harmonic oscillator, investigate the Euclidean path

integral, and discuss other applications.

1 Introduction

A fundamental question in quantum mechanics is how does the state of a particle
evolve with time? That is, the determination the time-evolution |¢(t)) of some initial
state [1(tp)). Quantum mechanics is fully predictive [3] in the sense that initial
conditions and knowledge of the potential occupied by the particle is enough to fully
specify the state of the particle for all future times.!

In the early twentieth century, Erwin Schrodinger derived an equation specifies
how the instantaneous change in the wavefunction 4 [¢(t)) depends on the system
inhabited by the state in the form of the Hamiltonian. In this formulation, the
eigenstates of the Hamiltonian play an important role, since their time-evolution is
easy to calculate (i.e. they are stationary). A well-established method of solution,
after the entire eigenspectrum of H is known, is to decompose the initial state into
this eigenbasis, apply time evolution to each and then reassemble the eigenstates.
That is,

'In the analysis below, we consider only the position of a particle, and not any other quantum

property such as spin.
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() = _Z exp [=1Ent/h] (n|¢(t)) [n) (1)

This (Hamiltonian) formulation works in many cases. In classical mechanics, however,
the Lagrangian formulation is known to be equivalent to the Hamiltonian one. Thus,
we seek an answer to the above question that relies on some analogue of the Lagrangian
action. In 1920, P.A.M. Dirac made a mysterious comment to this effect, which
later inspired Richard Feynman. Consider a trajectory x(¢) between an initial point
(xo,tp) and possible future point (2/,¢"). Let the transition probability amplitude
(Y(z,t)|1p(x0,t9)) be the inner product of the wavefunction in the Schrodinger picture
of the particle evaluated at these two points. Feynman hinted at the “equivalence” of
the probability amplitude and the exponent of the classical action of the trajectory
exp [1S[z(t)]/h], where “equivalence” is not yet well-defined. It was not until 1948
that Feynman, as a post-doctoral student at Princeton, formalized this connection.

In his landmark paper [4], Feynman presented a formulation of quantum mechanics
based on this principle. Let a given trajectory x(t) be associated with a transition
probability amplitude with the same form as that given by Dirac. Of course, by
quantum mechanics, we cannot speak of the particle taking any well-defined trajectory
between two points (g, ty) and (z’,t'). Instead, we can only speak of the probability
of finding the particle at these locations, which is related to wavefunctions | (zo, to))
and |¢(2',t")). That is, all that can be determined is the relative probability of the
particle taking one path or another.

Feynman’s insight was this - the total transition probability amplitude can be
obtained by summing the amplitudes of the particle having taken any individual
path. If the quantity (i(2',t")|¢(z0,19)) can be calculated in the method suggested
by Feynman, the time-evolution of the state can be determined by considering con-
tributions from all possible future states, and the problem is solved. Below, the kets
are eigenstates of the position operator, such that integration over all x spans the

entire basis.

(e, 1)) = / @ o, to) da (@, ¢)) 2)

Known as the path integral formulation of quantum mechanics, this method gives the
same results as those dictated by the Schrodinger picture, but also illuminates some of
the deeper aspects of quantum mechanics. In this paper, we will present the method

used by Feynman. Though it is pedagogically backward, we will then demonstrate
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the use of the method before showing its equivalence to the Schrodinger picture. We
will then investigate the method as applied to the harmonic oscillator. Following this,
we will introduce the concept of Euclidean path integrals and discuss further uses of

the path integral formulation in the field of statistical mechanics.

2 Path Integral Method

Define the propagator of a quantum system between two spacetime points (2, ¢") and
(x0, to) to be the probability transition amplitude between the wavefunction evaluated

at those points.

U(xlvt,;ajOvtO) = <w<x,7t/)‘w(x07t0)> (?))

If the Hamiltonian carries no explicit time-dependence, we can relabel the first time-
value ty = 0 and work only with elapsed time t = t' — t;. We will often write (3) as
U(z',t;xo) to illustrate this. The propagator above, along with an initial state ket,
fully describes the evolution of a system over time. It is also customary, as is done
in Sakurai [2], to use here the symbol K instead of U and refer to as the “kernel” or
“Feynman kernel”. The path integral method, as we are about to see, is an explicit
way to construct this propagator.

We consider possible trajectories z(t) of a particle moving through a time-independent
potential V(x) with endpoints fixed at (z¢, %) and (z’,#').? An infinite continuum of
such trajectories are possible, each with classical action S[z(t)]. Feynman [4] posits
that the contribution to the propagator from a particular trajectory is exp [i.S[x(t)]/h].
That is, every possible path contributes with equal amplitude to the propagator, but
with a phase related to the classical action. Summing over all possible trajectories,
we arrive at the propagator. The normalization constant A(t) is independent of any

individual path and therefore depends only on time.

U@t =AY e[Sk (@)

all trajectories

Equation (4) is the heart of the path integral formulation. How this summation

(which has yet to be well-defined) is to arrive at the correct propagator is far from

2 At this point, (t) could describe a trajectory through spacetime with any number of dimensions.
For our purposes, however, the particle moves along one spatial dimension, though a generalization

to more is straightforward.
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obvious. We now discuss some salient features of (4) and dive into the technical

details of a simple example.

2.1 The Classical Action

How can it be that the infinite sum above does not diverge? The different phases
are the key to this. For trajectories between which the action differs by AS ~ wh,
the corresponding contributions will cancel. Contributions to the propagator from
possible trajectories through a region far away from the classical path would, in the
aggregate, cancel.

Denote the classical trajectory z,(t) as the trajectory with the minimum value
of the action S[zy], which is stationary to first order with regard to deviations. On
the macroscopic system, this is the trajectory observed with very little uncertainty.
Investigation of Equation (4) gives a reason for this. Trajectories close to the classical
one cause no first-order deviation in the action, and contribute with coherent phase
to the integral. Trajectories with action mh more than the classical action are out of
phase, and interfere destructively with each other. Integrating over more and more
such trajectories should cause their contribution to average out to zero.

In this way, the classical trajectory is qualitatively important. In general, the
region of coherence is related to the “classical” nature of the system. On the (macro-
scopic) classical scale, wh is a frighteningly small amount, making the principal con-
tributing trajectories those in a narrow band around the classical one. On the quan-
tum scale, however, the action is small enough that A is enough to allow significant
quantum deviations from the classical trajectory. Intuitively, this corresponds to the
fundamental uncertainty in the particle’s position at any given time. Shankar [3]

briefly gives a more quantitative argument of the differences in the two cases.

2.2 Free Particle

For concreteness, we use the method above to determine the propagator for the sim-
plest of systems - a particle moving in free space along one dimension. In this case,
we will actually evaluate the integral given above “over all possible paths”, although,
as MacKenzie [5] notes after a similar derivation, often much of the study of the path
integral formulation is concerned with how to avoid just this.

Let x(t) describe a potential trajectory from (z,,t,) to (z, ). We discretize the

(tb_ta)
N

trajectory by dividing it into chunks of time At = , such that the intermediate
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points are (z1,t1), ...,(zn_1,tny_1). We do this with the hope that in the limit as
N — oo, this models a continuous path.> As V(z) = 0 for a free particle, the action
depends only on the velocity, which between any ¢; and t;,1 = t; + At is a constant.

We denote the action between ¢; and ¢;,1 by

it m [ Tii1 — T; 2 m
o a2 gy — O[Tl T e iy = )2
5= [ Gaera =5 (FEER) -0 = g sl 6)

liy1 — 1

To describe every path from (xzg,t) to (zy,tyn), we simply vary each intermediate
point z; at each t; over the entire domain. As the {z;} each take on a continuum of

values from —oo to 0o, the sum of the contributions from every path is

(@, )] (0, ) / / exp

ﬁTZx—SL’ 1]dx1~-~dIN_1
(6)

Here A(t) is the normalization constant that depends only on the elapsed time ¢y —t.
We can evaluate (6) by integrating over one variable at a time. For convenience, let
k i

srA;- Integration over the first variable yields

/_OO exp [k:(:c% —23) + k(2} - :)30))] dxq (7)
= /00 exp [2kx] + k(=220 — 230) + k(23 + 2)] day (8)

— YT oxp | o = o) ()
We ignore the constant term, since it is absorbed into the normalization constant
A. After a few more integrations, a pattern emerges which Feynman and Hibbs [1]
illustrate more explicitly: integrating over the first n spacetime points leaves a factor
of niﬂ(:zn—xo)z in the exponent after evaluation. We evaluate /N —2 more integrations
after the first one, and use the fact that NAt = (tx — ty) to rewrite expression (6)

concisely as

3Note that the constructed acceleration is a discontinuous impulse train of instantaneous jumps
in the velocity. Since the Lagrangian does not vary explicitly with &, and that in the limit this value

is continuous anyway, we ignore this.
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U(zn,tn;xo, to) = A(ty — to) exp [%(:c]v — x(])z} (10)
U(z,t;x0) = A(t) exp [%(a: — 170)2] (11)

The value for A is obtained by normalizing (11) over all z while holding ¢ constant.
The final result is

m
2th

m

Ule,tmo) =[5

exp [ (z — 930)2] : (12)

which is in fact the propagator for a free particle. A fascinating feature of this result
is that U is composed of the contribution from the classical path alone. This is not

always the case, and we will discuss this phenomenon in Section 3.

2.3 Equivalence to Schrodinger Picture

But is this new formulation really an equivalent picture of non-relativistic quantum
mechanics? Schrodinger’s equation in differential form defines the time-derivative of

a given initial state [¢)(xo,to)).
h? d?
 2mda?

We attempt to recreate this differential equation using the path integral formulation.

i 0o, t0)) = G, t0) = V(o)) o)) (13

Consider an initial state |1)(xg,%y)). Some infinitesimal time « later?, and at some

infinitesimal position vy away, the state can be described as follows.

e}

(e, to + ) = / 0 [0 + 7, to + @)} Uz + 7, 0 20) (14)

To calculate the propagator U = (¢(zg + 7, to + @)|¢(xg, to)), we need to determine
the action. For a given position coordinate zy 4+ v at time «, the particle’s velocity

and position can be approximated as i(v) and x + 3, respectively. The propagator is

40ur eventual intention is to allow ov — 0 to recreate the instantaneous derivative. Thus, we feel

no qualm making any justifying assumptions that are exact in the limit.
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Ulzo + v, a; 20) = A(a) exp {% /0 St (%z@)? - V(x(t)))} (15)

~ A(a)exp {% (;n V-V (xo + %) oz)} (16)

In the limit as « (and therefore ) become zero, the approximation above becomes
exact. Therefore, we expand several of the quantities in (16) in powers of « and +.

The exponential of the potential energy, and the potential energy itself are

%exp[—V(xojL%ﬂ:1—%&‘/<x0+%>+... (17)
Vv (:1:0 + %) = V(x) + V%V(xo) +... (18)

We keep the first two terms of (17) and only the first term of (18), which has the
effect of discarding all terms second order in («, ) and higher. Additionally, we can
expand the ket in the integrand |¢(z¢ + v, t) around xy. The first and third terms
are significant, but the second term results in an odd function within the (symmetric)

integrand, so we discard it as in [1].

d|w(x07t0)> 1 2d2 ‘w(x()ut(]))
dx * 57 dx? *

The approximate expression for (14) becomes

(w0 + v, t0)) = |[¥ (20, t0)) +

oot +0)) = A(@) 1= 27 )| [~ av [l + 2Tl e [ 22007 o)

[e.9]

It is straightforward to evaluate this Gaussian. Integrating, and keeping the first

order terms in the infinitesimals gives

U (20, t0 + ) = A(a)

2hra [ ha d?

1- EV (w0) + 2——} |1 (0, o)) (21)

m

For small «, we see that the first term on the right must equal the expression on

i)
2whia”

recover the time derivative, we can rearrange (21) and take the hmlt as a — 0 of

il to + a)) = [¥(z, )] / (hev).

the left, and that the normalization constant is necessarily A(a
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i oGt = (V(a0) = 55 ) otew o) 2

This is just (13), the time-dependent Schrodinger Equation, derived from a path
integral formulation of quantum mechanics. There are other ways to show this equiv-
alence. For example, MacKenzie [5] begins with the Schrodinger picture and shows
that it can be massaged into the Feynman formulation. Our direction, which is the
same as that of Feynman and Hibbs [1], is to show that the standard quantum theory

can be reconstructed from the “first principles” of the path integral method.

3 Harmonic Oscillator

Now let the particle be in a potential given by V() = smw?2?. In principle, we could
explicitly compute the propagator by considering a generic initial state and applying
time-evolution to each of the eigenstates. This way is algebraically brutal, requiring
the summation of an infinite series of expressions involving Hermite polynomials.
Using the tools we have developed above, we will derive the propagator for the
one-dimensional harmonic oscillator with a surprising lack of intense computation,

relying instead on the theoretical basis of the path integral formulation.

3.1 Derivation of the Propagator

We approach the problem in a slightly different manner. Let x.(t) and 2, (t) be the
classical path and its velocity, respectively. We can represent any other path as a
deviation from this one, x.(t) + y(t) and x,(t) + §(t), with the correct boundary con-
ditions (y and y are zero at the endpoints of the path). Let’s rewrite the Lagrangian
for a generic path in a way that isolates the classical Lagrangian. We relax the time

dependence, since it is implicit.

. ) 1 ) . 1
L(xg +y,ta+7) = 57” (T + y)2 + 577%02 (xa + y)2

1 1 1 1
— <§m:'c§l + §mw2xgl> + (M qy + mwzay) + <§my2 + §mw2y2)

(23)
The first term in (23) is just the Lagrangian for the classical trajectory. The second

term is zero by the Euler-Lagrange equations (since on a stationary path x, this
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term must be zero for any well-behaved deviation y). We will return to this later.
The third term is the Lagrangian for the deviation. The action is separable in the

sense that the propagator has the following form:

i i =N 1
— A t 2 L9 1 99 924
U = A(t) exp {hsml]] / — {h / (me +2mwy)] (24)

It can be shown that the integral over all paths depends only on elapsed time ¢ and
not on z (o) or xz(ty). Shankar [3] argues that this must be true since every deviation
has no knowledge of the endpoints of the trajectory (since y and ¢ are zero there).
We therefore absorb this time-dependent function into the normalization factor, and

are left with just the classical action.’

Normalizing this expression is not trivial.
Feynman and Hibbs [1] consider the decomposition of a deviation y(¢) into its Fourier
series with period ¢y — tg, and then integrate over the components. We use their

result, though there are other methods.

U=

me { e [(2® + 2) coswt — 2] (25)

X
2mih sin wt P 2hsinwt
This is the correct answer. Later, when we investigate the connection between the
path integral formulation and statistical mechanics, we will use this result to recover

the energy eigenvalues.

3.2 Separable Lagrangians

We have discovered that in some cases, only the classical trajectory contributes to
the summation in (4). There is a straightforward reason for this. The Lagrangian for
any generic path can be expressed as a two-dimensional Taylor expansion about the

Lagrangian of the classical action.

— 1 cd 1"
L(xcl+y7$cl+y cl+z_'|: _:)j' :| Lcl

chl deLcl . d chl .2d2Lcl
=L, 2yy— .
l+< )+<y a2 Waar Vg )t

(26)

5This is a known result, so we do not derive it here.
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The Euler-Lagrange equations on the classical (stationary) trajectory dictate that the
n = 1 term is zero. In a non-relativistic framework, the kinetic energy term in the
Lagrangian contributes a 2'9* term. Additionally, in a potential is quadratic in z and
% (as in the case of the harmonic oscillator and many other elementary potentials), the
Lagrangian separates exactly. Relation (26) shows that in these cases, the propagator
is simply related to the imaginary exponent of the classical action divided by the

quantum of action.

U~ A(t) exp {%S[xd]} (27)

Thus, there are many problems which can be reduced to determining the classical
action, once the relation above is shown to be true for the system. After this, the
normalization of the propagator becomes the only challenging task.

Although (27) is often a good approximation (and is even exact in some important
systems), we must be aware of its limitations and uses. Third or higher powers of
x or & in the Lagrangian will annul it. However, it works readily if the Lagrangian
depends on more than one trajectory, and can even be solved in the case of a time-
dependent input into the system f(¢). Feynman and Hibbs [1] provide a more in

depth discussion of this solution method and where it is applicable.

4 FEuclidean Path Integrals

Our approach in the following section is pragmatic, focusing more on the functionality
of a method than on a rigorous justification. In previous sections, we have related the
transition probability amplitude of the wavefunction between two points in spacetime.
This next section concerns revising not the method but the sense of spacetime.

Far from the classical trajectory, the rapidly oscillating terms in (2) can cause con-
vergence issues and are generally unpleasant to deal with. Observe that in Minkowski
spacetime with one physical coordinate, the proper distance o2 goes as the negative
square of the time —t?. However, in Euclidean spacetime, the sign of the t? term is
positive; they differ by a phase factor ¢. Consider what would happen if we introduced
a factor of 7 into the exponentials - the oscillating terms would turn into decaying
exponentials, which have an entirely different physical meaning.

With this as our motivation, let us analytically extend the time parameter into

the complex numbers C. In particular, let time have no real component, and identify
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t = —i7 with a real parameter 7 called imaginary time. This is formally known as a
Wick rotation, and rigorous justification of this step is not trivial. The fruit of such
a gambit will hopefully soon be made clear. Nevertheless, let us examine the form

propagator over a small time interval —i7.

Ry i [m (2 —x)% x+a

Uz, —it;z) = Z exp - {5? —iTV 5 (28)
all paths

We see that the potential energy has flipped sign relative to the kinetic energy term!

We redefine the Euclidean action Sglx(7)] of a trajectory in imaginary time x(7)

below.

Selelr)] = [ (5 + V(alr) (20)

1
The Euclidean action is a value related to the quantum tunneling process. We will
not enter into more detail on this; both Grosche [6] and MacKenzie [5] give a more in-
depth treatment. With this, we can define the imaginary time propagator U(z', ;)

as well.

U 7i2) = A(7) /

all paths {_ESE [x(f)]] (30)

h

Though the physical meaning behind this new propagator is still not obvious, we can
gain some sense of its interesting properties. What sort of value can the sum over all
paths in (30) have? No longer does the classical action cause the contribution to the
summation to oscillate; each path is now given a negative exponential weight based on
its Euclidean action. The classical path has the largest contribution, since the action
is a minimum there. Trajectories far away from the classical one see an exponentially
decreased contribution as Sg grows. A particle obeying the Euclidean equations of
motion experiences the potential in the other direction, which is intuitively correct
- a path through a region of high potential dampens the contribution of that path

through the negative exponential dependence of the action.

4.1 Statistical Mechanics

We briefly explore the connection between the Euclidean path integral and statistical

mechanics. Consider an ensemble system at thermodynamic equilibrium with ordered
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energy microstates {E,} for n = 1,2,.... The partition function Z of statistical

mechanics encodes probabilistic information about the system.

Z =Y e Pt (31)
n=1

Above, = 1/k,T be the inverse temperature of the system at a given temperature T
with Boltzmann’s constant k. The form of (31) is reminiscent of the time-evolution
constructed from energy eigenstates back in (1), which we have shown has an equiv-
alent expression as the integral over propagators to all possible points in (2). The
natural question is whether we can derive the partition function from a path integral
standpoint. It would seem that replacing the time variable ¢t with the quantity —i(3
would be a good first step. As we have seen above, this moves us into the realm of
Euclidean path integrals.

The analysis below is based on that of Grosche [6] and Feynman and Hibbs [1].
Consider a quantum system with the discrete energy spectrum given above. We
rewrite the imaginary time propagator between z’ and x by decomposing the bra and

ket into a basis of eigenstates and applying time-evolution to each one.

U, ma) =) (@|n) e DM nja) =3 (nle) e 0 (2 |n) (32)

n n

Now, setting 2’ = x and 7 = $h and integrating over all x yields

/ dzU(z, Bhix) = Y (n| / dre " |2) (xln) =Y e = Z (33)

This is the relation between the imaginary time propagator and the partition function
that we are looking for. As a vivid illustration of this equality, we return to the case

of the harmonic oscillator, whose propagator we derived in Section 3.1.

/ mw mwz?

The partition function for the harmonic oscillator Z is the integral of (34) over all z,

which is easy to evaluate since the function is a Gaussian.
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2
x
Z=1d d —
/ xU(z, —if; x) 1/27rhsmhﬁhw/ T exp e ) (35)

mw(coshﬁﬁw 1)

hsinh Shw B 1 36
\/W mw (cosh Bhw — 1) \/2(cosh Bhw — 1) (36)

Expanding this hyperbolic function gives the desired result.

(v/2(cosh Bhiw — 1)) 7! = (Vebl — 2 4 e=Bho) 1 = (PM0/2 _ o=Ohe/2)=1(37)
—Bhw/2 1
—e P /1_6 Zexp[ ( 2)%} (38)

This is the expected partition function, complete with the energy eigenvalues of the

harmonic oscillator!

5 Discussion

This manuscript has been intended as a brief introduction; the literature is richer in
application, scope and rigor. Feynman and Hibbs’ [1] textbook classic introduces all
of quantum theory from this perspective. MacKenzie [5] notes that a path integral
formulation naturally leads to an investigation of the Aharanov-Bohm effect using
these methods, and goes on to present stationary perturbation theory using Feynman
kernels. Shankar [3] delves into path integrals through phase space and coherent
state space, and applies them to a number of sophisticated topics such as the Berry
phase. Sakurai [2] writes more generally about Green’s functions. Grosche [6] presents
a paper startling in its rigor and thoroughness on the topic. Other sources even
demonstrate the use of path integrals in quantum field theory:.

Still, we have managed to cover quite a bit of ground on the topic of path integrals
in quantum mechanics. Our formulation of quantum mechanics has been driven
by two key principles. Starting from the principle that a particle takes no well-
defined trajectory between two points at which it is observed, we define the transition
probability amplitude between two points as a summation over all paths. This was
Feynman’s insight. Then, we connect the contribution to the amplitude from any
given path with the corresponding classical action along the path in the manner

suggested by Dirac.
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We have derived the free particle propagator in a manner that fully demonstrating
the “integrate over all possible paths” principle. We have shown equivalence to the
standard Schrodinger formulation of quantum mechanics. Then, taking advantage
of the restrictions that the classically observed Lagrangian action provides, we have
derived the harmonic oscillator propagator, and discussed potentials for which the
propagator is easily solvable. After this, we have defined the path integral in Eu-
clidean spacetime, and showed how it is related to the partition function in statistical
mechanics. From this, we have recovered the energy eigenvalues of the harmonic
oscillator.

It is said that Richard Feynman could not allow believe any physics he had not
rederived for himself. Though our analysis has been brief, and with less emphasis on
straightforward rigor than on pragmatism, it is clear that the scope and success of
Feynman’s method is truly remarkable.
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