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The Newtonian and relativistic relationships between the velocity, momentum and energy of an
electron traveling at relativistic speeds are compared. Plots of these values are obtained using an
electromagnet, velocity selector and solid-state detector. Values of the electron charge and electron
rest energy are calculated at e = 1.44 ± .02 × 10−19 C and mec

2 = 514 ± 6 keV, respectively. The
possibility of systematic error in the electromagnet is discussed.

1. INTRODUCTION

The familiar Newtonian relationships between the ki-
netic energy, momentum and velocity of a particle break
down as its speed approaches that of light. Instead, a
new set of relativistic relations must be brought to bear.
By determining these relations at high speeds, we can
demonstrate the correctness of relativistic dynamics and
calculate the invariant mass and electric charge of the
particle under consideration. Though a large amount of
energy is typically required to accelerate an object to rel-
ativistic speed, such an energy is readily attainable by an
electron ejected during beta decay.

2. THEORY

2.1. Theory of the experiment

An electron with charge e moving with velocity ~v inside
a magnetic field of strength ~B experiences a force e

c~v× ~B.
If the electron has momentum p and is moving in the
plane perpendicular to the direction of the field, it enters
a circular trajectory with radius r described by:

Ber/c = p (1)

We note that the radius of the curvature is dictated
entirely by the strength of the field and momentum of
the electron. If the electron then enters a region with an
electric field ~E, it will experience a force in the direction
opposite to the field with magnitude eE. If these fields
are causing forces to act on the electron in opposite direc-
tion, the net force eE− evB/c will cancel for an electron
with a certain velocity given by

v = c
E

B
(2)

Electrons with a different velocity will be deflected to
one side or another, and only when the ratio of the fields
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is equal to the ratio of the velocity of incoming electrons
to the speed of light will the number of electrons that do
not deviate significantly from a straight line be highest.
This is the principle behind the parallel-plate velocity
selector used in the experiment.

2.2. Relativistic dynamics

The Newtonian equations of motion taught in high
school are correct to a high degree of accuracy in non-
relativistic systems. A particle with velocity v and mass
m has momentum ~p = m~v and kinetic energy given by

K =
p2

2m
=

1
2
mv2 (3)

However, these relations must be modified under the
postulates of special relativity.[1] A particle with velocity
v in an inertial reference frame of reference has momen-
tum γmv in that reference frame, where γ is called the
Lorentz factor, and for a particle with velocity v is equal
to γ = 1q

1− v2

c2

. In addition, we define β = v
c . The

inclusion of these terms serves to simply relativistic ex-
pressions.

The total relativistic energy T of a particle is given
by T 2 = p2c2 + m2c4 = γmc2. The kinetic energy K
is the total energy less mc2 (where mc2 is known as the
particles “invariant rest mass” or “rest energy”), given
by

K = (γ − 1)mc2 (4)

The different expressions for the energy and momen-
tum of a particle will, as we will see, deviate strikingly
as v approaches c.

3. EXPERIMENTAL SETUP

Our experimental setup, diagrammed in Figure 1 con-
sisted of a coiled spherical electromagnet, Strontium-90
electron emission source undergoing beta decay, parallel-
plate velocity selector, solid-state particle detector and a
multi-channel analyzer system in the form of a PC.
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FIG. 1: Diagram of experimental setup, modified from[2].
PIN is the solid-state silicon detector.

The electromagnet had the correct distribution of
surface charge to effect a downward-oriented magnetic
field. We measured its radius with a meter stick at
r = 20.4 ± .1 cm. A variable high-voltage power sup-
ply determined the strength of the magnetic field inside
the sphere. The magnitude of this field was measured
with a gaussmeter, which worked by measuring the Hall
Effect across a metal probe inside the sphere. To de-
termine the non-uniformity of the magnetic field inside
the electromagnet, we measured the strength of the field
in ten different locations inside the sphere. The relative
non-uniformity in the field was not more than 1%. Due to
limitations in the power supply, 125G was the maximum
attainable field.

However, this is more than a sufficient magnitude of
the magnetic. We were able to observe electrons with
β ' .8 with a maximum-magnitude field. The velocity
selector consisted of two conducting plates separated by a
distance d = .185 cm, and the potential difference across
them was controlled by a high-voltage source and mon-
itored by a digital voltmeter. Throughout the course of
the experiment, this value ranged from 2 to 5 kV.

The silicon solid-state detector, acted on by a 67V bias
voltage source battery, sent out a positive-voltage pulse
with height relative to the magnitude of the energy of
the detected particle impacting it. This pulse was caught
by the amplifier, and sent to the multi-channel analyzer
(MCA) card on a PC, where the intensity of the events
colliding with the detector was plotted against energy.

3.1. Methodology

We began each day with a calibration of the gauss-
meter using a known-strength magnetic source, and a
calibration of the energy spectrum using the energy spec-
trum of the electron capture of, and de-excitation of the
133Cs daughter of, a 133Ba source. In general, we were
able to calibrate the gaussmeter to within 1% of the value
of the calibration source. We were careful to keep the
metal probe perpendicular to the magnetic field at all

FIG. 2: Energy channel calibration with known radioactive
source. The displayed counts were collected over a ten hour
period.

times.
For a dozen values of the magnetic field B that ranged

from 65 to 125 Gauss, we recorded a two-minute energy
spectra for multiple values of V , being careful to take at
least six measurement of V in the vicinity of the value
V0 that seemed to cause the maximum number of counts.
Our step size was .15kV. Treating the measured inten-
sities as Poisson-distributed, we fit Gaussian profiles to
each data set. The uncertainty in the parameter V0 was
on the order of .5%− 1% for each value of B, with fits of
quality χ2

ν = .5− 1.5. Because of the low error and ideal
χ2

ν , we felt justified in accepting these values of V0.
We calculated the kinetic energy K of observed events,

respectively its uncertainty, by taking the mean, respec-
tively standard deviation, of the median energy channels
of the observed intensity/energy distribution. The rel-
ative uncertainty in the kinetic energy, when calculated
this way, was not more than 1%.

There was significant low-energy noise caused by the
presence of the strong magnetic field. We filtered out the
first hundred spectrum channels, but the “dead time”
during each reading hovered between 10% and 15%. Be-
fore each data collection session, we recorded the pressure
inside the sphere as displayed on a connected barometer.
At no point was it higher than 3.7 × 10−5 torr, which
assured a negligibly small rms scattering angle for the
electrons in the experiment.

4. DATA ANALYSIS

4.1. Calibration of the energy spectrum

The calibration energy spectrum is pictured in Fig-
ure 2. The barium-133 in the calibration source decays
into an excited cesium-133 atom by electron capture. The
branching ratios and energies of the initial excited and
all the intermediate excited states of cesium are well-
known [3], and thus the relative intensities of observed
photopeaks is a clue as to their identity.
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FIG. 3: Attempted fit to the Newtonian energy-velocity rela-
tion, with adverse results.

However, the efficiency of the photoelectric effect in sil-
icon is significantly less than that of the Compton effect
for photons with energies higher than 100− 200 keV [2].
Thus, the Compton edges, caused by a scattering (in-
stead of absorption) of photons by the detector, are the
most prominent feature, although several photopeaks are
individually detectable. We identified three of the most
prominent cesium-133 gamma ray energies, 81.0 keV,
302.9 keV and 356.0 keV with a single channel each, and
constructed a calibration for the rest of the channels. We
observed a slight positive zero offset of approximately
3 keV, which we corrected for.

4.2. Relativistic and classical plots

Consider a particular combination of fields E (= V0/d)
and B. Particles arriving between the parallel plates of
the velocity selector had to have a specific momentum
given by (1), and a specific velocity v = E

B c to not de-
viate once inside the plates. Thus, the value of V0 that
maximizes the number of electrons hitting the solid-state
detector is the value of the voltage at which the net force
from the magnetic and electric fields cancel. At this
value, the particle’s velocity is given by rearranging 2
to find v = V0c/Bd. The spread of kinetic energy is dis-
played on the MCA. Thus, for a given pair of matched
values B, V0, we are able to either directly measure or
calculate the velocity, momentum and energy of observed
electron events colliding with the detector.

Having obtained data points (v, p, K), we set out to
determine how effective the Newtonian equations are. An
attempted non-linear fit of the form K(v) = 1

2mev
2 is

shown in Figure 3. The value of electron rest energy is
calculated at mec

2 = 763 ± 9 keV with a reduced-chi-
squared of χ2

ν = 11.73, which corresponds to a likelihood
infinitesimally close to zero. These results demonstrate
the ineffectiveness of the Newtonian equations of motion
at relativistic speeds.

Thus, we turn to the predictions of relativistic dynam-
ics to explain our data.

FIG. 4: Linear relation between kinetic energy and γ − 1.

4.3. Determination of mec
2

We plot K against γ − 1 in Figure 4. Before we can
attempt a linear fit, we must express the error in the
value on the ordinate in terms of the basic uncertainties
in V0, B and K.

The uncertainty in the independent parameter is not
negligible compared to that of the independent parameter
and following Bevington [4], we calculate the contribution
σKI = d(K)

d(γ−1)σγ−1 from the uncertainty of γ−1 to K, and
add it in quadrature to the direct contribution σKD. The
error in γ, in turn, is related to the error in β = V0

Bd , which
is in turn related to the error in those two quantities:

σ2
γ =

β2

(1− β2)3
σ2

β (5)

σ2
β =

1
B2d2

σ2
V0

+
V 2

0

d2
σ2

B (6)

Having calculated the uncertainty in K, we obtain the
linear fit shown in Figure 4 and determine the slope to be
mc2 = 514 ± 6keV, with a reduced-chi-squared of χ2

ν =
1.32.

4.4. Determination of e/mec
2

Equating the relativistic equation for momentum
with (1), algebraic manipulation obtains γβ = B er

mc2 .
Let S = er

mc2 . We intend to manipulate this relation
into a form convenient for error analysis and fitting. The
term on the left can be expressed in terms of β = V0

Bd .
Significant algebraic manipulation yields

V0 =
B2Sd√

1 + B2S2
(7)

We plot V0 against B in Figure 5. As above, the er-
ror in the independent variable contributes significantly
to the error in the dependent variable. Specifically, the
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FIG. 5: Restatement of momentum-velocity relation in terms
of E and B, and fitted line.

uncertainty σV0 has a direct contribution σV D and a con-
tribution from the independent variable σV I =

(
dV0
dB

)
σB

added in quadrature. For every pair of values (V0, B),
we determine this derivative computationally to obtain
an appropriate error term.

Having calculated the uncertainty in V0 from all
sources, we obtain the non-linear fit shown in Figure 5
and determine the single free parameter to be S =(

er
mc2

)
= .0107±.0001 stat-coulombs-cm

erg , with a reduced-
chi-squared of χ2

ν = 0.13. Dividing out r, and adding its
error to the error in the slope in quadrature, we obtain
the value e/mec

2 = 5.25± .06 × 10−4 stat-coulombs
erg .

The low reduced-chi-squared in the fit hints at an over-
estimation of the error. In particular, we may be incor-
rectly considering the “non-uniformity” in the magnetic
field to be random error, where it could be considered sys-
tematic error. Consider that to enter the velocity detec-
tor, an electron must along a relatively distinctive path,
and while B may vary across the electromagnet, perhaps
it does not change that much along the path taken by
the particle. If this were the case, we would want to con-
sider the possibility that we are under- or over-measuring
the magnitude of the magnetic field. On the one hand,
this might lead to a better adjusted value of e

mec2 , while
shrinking the error bars in each measurement of B and
raising the χ2

ν of a fit closer to 1. On the other hand, this
would have an adverse effect on our value of mec

2.
Since we are relatively confident from our calculation

of the electron rest energy that no such systematic error

exists, we decide against pursuing this avenue.

4.5. Determination of e

The electron charge is now a product of two mea-
sured values, e =

(
e

mc2

)
(mc2). We convert the former

of these to SI units: e
mc2 = 5.25 × 10−4 stat-coulomb

erg =
2.81×10−22C/keV. Taking their product, and adding the
relative uncertainties in quadrature as dictated by [4], we
obtain

e = (2.81× 10−22) · (514) = 1.44× 10−19 C (8)

σe = e

√(
.06
5.25

)2

+
(

6
514

)2

(9)

Our calculated value of the electron charge is e =
1.44± .02× 10−19C.

5. CONCLUSIONS

Our calculated value of the electron rest energy mec
2 =

514± 6 keV is in excellent agreement with the literature
value of mec

2 = 511 keV. Additionally, the strength of
the fit (χ2

ν = 1.32) of K against γ − 1 upholds the theo-
retical linear relation between these values as postulated
under relativistic dynamics.

Our calculated value of the ratio of the electron
charge to the electron rest energy e

mc2 = 5.25 ± .06 ×
10−4 stat-coulombs

erg , however, is more suspect. It is more
than ten standard deviations away from the literature
value of e

mc2 = 5.87× 10−4 stat-coulombs
erg . Additionally,

the fit of the line is poor: χ2
ν = .13. The latter result

hints at several possibilities of the underlying reason for
this discrepancy, which we have discussed above.

We have no simple explanation for the large discrep-
ancy in this result. The fact that the electron rest energy
has a value close to the literature seems to be inconsistent
with that of the electron charge. We hope to repeat this
part of experiment and derive a better result, or, at least,
come to an understanding of why this one is so shoddy.
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