
Quantum Information Processing

Dennis V. Perepelitsa∗
MIT Department of Physics

(Dated: April 29, 2007)

We implement a two-qubit quantum computer using bulk-ensemble nuclear magnetic resonance
spectroscopy methods. The QC system is described and calibrated. The Deutsch-Jozsa algorithm
is successfully executed on every one-bit input boolean function. Grover’s algorithm is successfully
executed for N = 40 iterations on a two-bit search space.

1. INTRODUCTION

Richard Feynman first proposed the idea of performing
computations on the quantum scale in 1982, and went
on to characterized primitive quantum logic gates three
years later.[3] In the decade that followed, a series of
theoretical discoveries spurred the interest in practical
implementations of quantum computing.

The Deutsch-Jozsa algorithm [1], first presented in
1992, was the first truly quantum algorithm in the sense
that it took advantage of the quantum nature of its im-
plementation to perform calculations in ways that clas-
sical computers could not. Peter Shor followed with
a quadratic-time factoring algorithm in 1994, and Lov
Grover [2] presented a fast database search algorithm in
1996.

In 1997, Gershenfeld et. al. and Cory et. al. pro-
posed nuclear magnetic resonance implementations of a
quantum computer, using spin eigenstates of entangled
particles as qubits and standard NMR pulses as state op-
erators. This is the implementation used by our system.

2. THEORY

The system we describe has two distinct nuclear spins,
organized by the size of their magnetic moment, which
serve as the computational basis, listed below.

{|00〉 , |01〉 , |10〉 , |11〉} = {|↑↓〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} (1)

At any time, the system is described by the tensor
product of two state vectors in the Bloch sphere repre-
sentation. By applying transverse radiofrequency pulses
of a frequency close to that of the desired qubit, we can
perform rotations of either state vector.

Rx =
1√
2

[
1 −i
−i 1

]
, Ry =

1√
2

[
1 −1
1 1

]
(2)

We include an index after x or y to indicate which qubit
the rotation is acting on. Strictly speaking, an operation
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TABLE I: Classification of Deutsch-Jozsa functions

Function Action on (0, 1) Uf DJ Result

f1: ZERO (0, 0) I |00〉
f2: ONE (1, 1) R2

x1 − |00〉
f3: ID (0, 1) UCNOT |10〉

f4: NOT (1, 0) R2
x1UCNOT − |10〉

O on the first qubit should be written as the tensor prod-
uct [O1 ⊗ I2], but we drop this when the meaning is clear.

When no pulses are applied to induce rotations, the
Hamiltonian contains a free-evolution term that comes
from first-order spin-spin coupling of the nuclei. If the
system is allowed to evolve freely for a time T = 1/(2J)
where J is a physical property of the system known as the
coupling constant, the system will undergo a transforma-
tion we define by τ . It is this evolution that accounts for
the entanglement of the particles, and gives the system
a component that is not classically replicable.

τ = exp
[
iπ

2
JTσz1 ⊗ σz2

]
= eiπ/4 diag(−i, 1, 1,−i) (3)

For a given boolean function f with one boolean input,
we define the corresponding unitary operator Uf by the
action of f , as follows.

Uf |x y〉 = |x (f(x)⊕ y)〉 (4)

The ⊕ operation above is addition modulo 2, also
known as XOR. A particularly key operator, called the
controlled-not logic gate is implemented below with a se-
ries of rotations and a free evolution. Feynman [3] offers
an excellent overview of quantum logic gates.

UCNOT |x y〉 = |x (x⊕ y)〉 (5)
UCNOT = R−1

y1 τRy1Rx1Rx2Ry2R
−1
x2 (6)

We turn to the problem of initial state preparation.
The Boltzmann distribution dictates that due to the dif-
ferences in the energy eigenvalues, the system is not quite
at a pure mixture of the four states. The thermal density
matrix ρtherm is roughly equal to
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ρtherm ≈ 1
4
I + 10−4 diag(5, 3,−3,−5) (7)

We refer to this state as the thermal state and use
it later for calibration purposes. It is undesirable, since
many quantum algorithms require the specific pure initial
state |00〉. We get around this by using a time-averaging
method to create a pseudopure state. It works by cycli-
cally permuting the last three elements along the diag-
onal with rotations and then averaging the result of the
desired pulse sequence from all permutations, and taking
the average. It can be shown that this average gives the
same result as if the pulse sequences acted only on the
pure state |00〉. A more detailed description is provided
in the lab guide [4].

2.1. Deutsch-Jozsa Algorithm

We present here a simplified version of the algorithm
devised by Deutsch and Jozsa [1] (extensions to functions
with more bits of inputs are straightforward). Let f be
a function with 1 bit of input and 1 bit of output, im-
plemented with the operator Uf , as described above. We
characterize all such f in Table I. Classically, we would
have to evaluate f(0) and f(1) to determine if both out-
puts are represented. However, consider the action of the
following pulse sequence on the pure state |00〉.

(R−1
y2 Ry1)Uf (Ry2R

−1
y1 ) |00〉 = (8)

1
2

[
(−1)f(0)(|0〉 − |1〉) + (−1)f(1)(|0〉+ |1〉)

]
⊗ |0〉

If both 0 and 1 are outputs, the result of (8) is |10〉.
Otherwise, it is |00〉. By measuring the system a sin-
gle time, we can determine whether one of (f1, f2) or
(f3, f4) is present.

2.2. Grover’s Algorithm

Let f be a boolean function with two bits of input
which returns true (f = 1) for exactly one input x0.
Grover’s database search algorithm [2] determines this
input with only a single observation. We present it here
with a search space of four basis states.

Pick the “needle in the haystack” basis state x0. De-
fine O as the operator that flips the sign of this state
and leaves all others unperturbed. Called the Oracle,
this operator distinguishes x0 from the other states in a
straightforward manner. Though we implement the Ora-
cle directly with a pulse sequence, it must be noted that
the action of the operator could arise from some other
mechanism and need not be known to the experimenter.
Next, define the Hadamard operator H as

TABLE II: Pulse implementation of Grover’s algorithm oper-
ators

G(x0 = |00〉) R−1
x1 Ry1R

−1
x2 Ry2τR−1

x1 Ry1R
−1
x2 Ry2

G(x1 = |01〉) R−1
x1 Ry1R

−1
x2 Ry2τR−1

x1 Ry1Rx2Ry2

G(x2 = |10〉) R−1
x1 Ry1R

−1
x2 Ry2τRx1Ry1R

−1
x2 Ry2

G(x3 = |11〉) R−1
x1 Ry1R

−1
x2 Ry2τRx1Ry1Rx2Ry2

H =
1√
2

[
1 1
1 −1

]
⊗ 1√

2

[
1 1
1 −1

]
(9)

Finally, let the phase-shift operator P =
diag(1,−1,−1,−1). The composite Grover opera-
tor G = HPHO is the heart of the algorithm, as we
will see. Table II gives the rf pulse realization of the
operator G for each choice of x0.

Obtain the maximally mixed state by applying H to
|00〉. Every iteration of G rotates the state vector by 60◦
through the (H |00〉× |x0〉) plane. Thus, after only a sin-
gle iteration, the system is in the selected state. Every
additional N = 3 applications of G returns the system
to state |x0〉. The single-evaluation search, and the os-
cillatory nature are principal features of this quantum
algorithm. Chuang and Nielsen [5] have an intuitive ge-
ometric visualization of this process, as well as a more
in-depth description.

3. EXPERIMENTAL SETUP

The data acquisition system consists of a Bruker
Avance 200 NMR spectrometer and two control comput-
ers, as pictured in Figure 1. A workstation issues com-
mands over the network through a MATLAB interface to
another machine running Bruker NMR software, which
transmits and receives NMR pulse information from the
spectrometer. A more detailed description of the soft-
ware involved is available in the lab guide [4].

The NMR sample is a sealed vial of 13CHCl3 placed
in a strong superconducting magnet, which is then spun
rapidly to average out inhomogeneities in the field. The
sample sits surrounded by coils in the transverse plane
which are used as the circuity for both delivering ra-
diofrequency pulses to the sample as well as collecting
the induced signal from the precessing nuclei. The trans-
mission chain and signal collection circuitry are tuned
to operate at the resonant frequency of the proton and
carbon-13. Tqhe spin of carbon nucleus and proton, re-
spectively, are the first and second qubit in our system.

The pulse reception chain amplifies and filters the free
induction decay signal, which is then Fourier transformed
into the frequency domain by the software, resulting in
two roughly Lorentzian lineshapes. The measured volt-
age is complex-valued since the superheterodyne receiver
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FIG. 1: Schematic of the Bruker acquisition system.

in the pulse reception chain is capable of distinguishing
the direction of precession as well as its frequency.

To actually observe signal, we rotate the state vec-
tor along the x-axis into the plane of the rf coil with
a 90◦ readout pulse. For a diagonal density matrix
ρ = diag(a, b, c, d), the left and right proton and left and
right carbon peaks are (a−c), (b−d), (a−b) and (c−d),
respectively. The laboratory guide [4] explains in more
detail how the proton and carbon spectra arise from the
density matrix after the application of the readout oper-
ator.

4. ERROR ANALYSIS

All readout spectra exhibited a level of background
noise. The average of this noise was subtracted from the
numerically integrated value of the peaks, and its stan-
dard deviation was taken to be the uncertainty in the
contribution from any individual point. In most cases,
asymmetries in the observed lineshape and insufficient
amount of uncertainty made fitting to a Lorentzian pro-
file impossible. Numerical integration using Simpson’s
rule and this source of background fluctuation provided
peak integrals with uncertainty on the order of .5%.

While processing the Deutsch-Jozsa data, the abso-
lute value of the signal was integrated, since no phase
differences were expected. While processing the Grover
data, both real and imaginary parts were integrated,
since phase played an important role. The exception to
numerical integration was the case of a few thermal state
spectra, which we were able to fit to Lorentzian line-
shapes using standard non-linear fitting methods. These
spectra provide for some of the system parameters de-
scibed above.

A quantitative measure of random error was obtained
by taking twenty spectra of the thermal state and com-
paring the integrated peak values. The relative random
error was on the order of 1%. At the beginning of each
day, a calibration spectrum of the thermal state was

FIG. 2: Proton spectra of the result of the Deutsch-Jozsa
algorithm. Left to right, top to bottom, the functions are f1,
f2, f3 and f4. Frequency is on the abscissa, voltage is on the
ordinate. The peaks are labeled with their normalized value.

taken, and the calculated values set to the reference (8, 8)
and (2, 2) for the proton and carbon spectra, respectively,
by design.

Observed peak integrals were then normalized using
that day’s calibration peak integrals. The random er-
ror and both background fluctuation uncertainties were
added in quadrature to obtain the final peak integral un-
certainty.

5. RESULTS

5.1. System parameters

We used several methods to determine fundamental
parameters of our QC system. Using the fluctuations
in the noise of the Fourier spectrum as a source of un-
certainty, we were able to perform least-squares fits of
Lorentzian lineshapes to the proton and carbon readouts
of the thermal state. The pairs of peaks were centered at
ωp = 200.13MHz and ωc = 50.33MHz, respectively, with
accuracy to that many digits. The separation between
them in frequency space is the spin-spin coupling con-
stant J = 214.99(1)Hz. The full-width half-maximum of
the peaks is the inverse of the spin-spin relaxation time.
Averaging the values obtained across the spectra, and
using standard error propagation methods presented in
Bevington [6], we obtain T2 = 1.21(1)s. The lowest χ2

v

obtained for these fits was 11.1.
Using a standard inversion recovery method imple-

mented with a 90◦−T − 180◦ pulse sequence, we plotted
peak height against 60 delay times T , and obtained an
exponential fit. The resulting spin-lattice relaxation time
was found to be T1 = 21.8(1)s. Then, we plotted the net
magnetization against 60 values of varying pulse widths
and obtained a damped sinusoidal fit. The first maxima
on the plot were taken to be the 90◦ pulse widths, with
pwp = 9.2ms and pwc = 8.4ms, respectively. χ2

ν for these
fits ranged in the high single digits.
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FIG. 3: Relevant peak heights plotted over forty iterations of
Grover’s algorithm with x0 = |00〉. Left to right, these are
the left proton and right carbon peak. Iterations of Grover’s
algorithm is on the abscissa, normalized peak height is on the
ordinate. The red line is the predicted value, and the blue
line is the result of the experiment.

5.2. Deutsch-Jozsa algorithm

Figure 2 displays the resultant proton readout spectra
for the result of applying the Deutsch-Jozsa algorithm
with each of the four functions. The top two spectra
clearly correspond to |00〉 and the bottom two to |10〉.
As expected, a single observation is enough to distinguish
the “fair coin” functions from the others.

The left and right peaks are within a 15 − 20% devi-
ation from the expected values of (6, 0) for the top two
spectra and (−6, 0) for the bottom two, respectively. The
carbon spectra, which we do not show for lack of space,
showed a slightly better agreement with theory, the left
and right peaks exhibiting a 10% deviation from the ex-
pected values of (6, 0) and (0, 6).

5.3. Grover’s algorithm

Although we were successful in obtaining similar data
for all four possible implementations of Grover’s algo-
rithm, we present here only the x0 = |00〉 results. Fig-
ure 3 presents two key peaks in the carbon and proton
spectra. These peaks are the left proton and right car-
bon peaks, and both should be 6.0 after normalization
when the system is in the state x0. We can see that not
only is this state entered after only one iteration of the
algorithm, but that it repeats at N = 4, 7, 10, . . . , as pre-
dicted, confirming the oscillatory nature of this quantum

algorithm.
The net magnetization seems to decay over time, but

this is far from surprising. Each iteration of Grover’s al-
gorithm consists of eight rf pulses and two free-evolution
decays. The length of forty iterations of this pulse se-
quence begins to rival the spin-spin relaxation time of
the system T2. The magnetization fall-off can thus be
attributed to the system slowly relaxing to equilibrium.

6. CONCLUSION

We have implemented two quantum algorithms with
no classical analogue on a two-qubit quantum computer
using NMR spectroscopy methods. The fact that our
system calibration produced fits with high values of the
χ2

ν parameter is more an artifact of the lack of signifi-
cant random error, and of imperfections in the observed
lineshape.

We have successfully executed the Deutsch-Jozsa algo-
rithm on all one-bit input boolean functions, with devia-
tion no more than 15% on the average from the expected
peak integrals. We have successfully executed Grover’s
searching algorithm with N = 40 iterations on every pos-
sible value of x0, and have confirmed the oscillatory na-
ture of the algorithm. Without significant improvement
to our estimation of systematic error or experiment tech-
nology, we believe this number of iterations is close to
the maximum before system decoherence trumps the ob-
served signal.

While our experimental setup gives strong qualitative
agreement with the expected results, our calculated un-
certainty is not nearly enough to cover the deviations of
the observed peak integrals from their predicted value.
There are a number of sources of systematic error which
could account for this. The observed asymmetric line-
shapes present in our frequency spectra could have arisen
from improper even-order shimming of the magnet. Sys-
tematic inhomogeneities are no doubt present in the mag-
netic field or the rf coils, and imperfect pulse widths
would lead to a deterioration of the system over time.

The presence and order of these systematics is a topic
for further investigation.
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