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Summary

We approach the problem of congressional redistricting with a two-level
model operating first at the statewide level, and then at the countywide
level on some counties. At the statewide elvel, we consider connectivity,
total population, and minimization of the number of counties split between
districts to be of primary importance in creating “simple” congressional
districts. To optimize over these values we use a modified graph partitioning
algorithm on a graph representation of the counties. Those counties which
must be divided between districts are passed to a county-level model.

In the state-level model, we use a divide and conquer algorithm in which
district allocations are handled by recursively splitting the graph into two
pieces of about the same population. When no such partition exists, it will
split the largest counties along the cut it is making, treat each half of the
split counties separately, and continue.

Within counties which must be split we also consider roundness and
population density along district lines. We minimize a badness function
representing a linear combination of inverse values for all criteria we use
for simplicity, by using a simulated annealing approach on a square grid of
population densities. Initial seeding of the grid into the desired number of
districts is done in a greedy manner. Then, grid squares bordering other
districts are chosen at random to be given to neighboring districts. Changes
which lower the badness are accepted while changes raising the badness are
accepted at a rate exponentially decaying with how detrimental their effect
is.

We find that our algorithm gives satisfactory results at both model levels.
On a map of New York State, the state-level model finds a partition into
29 districts that only divides four counties unnecessarily. Additionally, the
districts created by the model tend to be coherent and have relatively high
roundness. At the county level, we find that our minimization criteria tend
to avoid splitting up cities, and create high roundness shapes as expected.
The county model is also faster than any approach found in the literature
while considering a finer level of detail.

All in all, our two-stage approach is simple yet effective, and the district
plans it creates would be much easier to explain to voters than the current
district layout.
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1 Problem Restatement

The current rules for partitioning a state into federal congressional districts
require only that each district in a state contain approximately the same
number of people. This leaves open the possibility of political manipulation
in the districting process, often leading to complex district shapes which
voters find unsatisfactory. We therefore ask, what makes a simple district?
What does an ideal set of “simple” districts within a state look like?

We seek a solution which, in addition to answering these questions, is a
satisfactory and utilitarian solution for voters. We seek to define an optimal
district in a manner which

• Can be described to voters in a few simple sentences,

• Is simple to describe and implement,

• Can use data at arbitrary levels of detail to produce results of arbitrary
precision,

• Creates “simple” district shapes, and

• Is unlikely to cause implicit gerrymandering.

2 Optimal District Criteria

What makes a partition of a state into districts a good one? We list several
criteria which are generally considered to be desirable, with the intent of
providing specific metrics later.

• Districts are simply connected wherever possible and don’t
have any holes. Mathematically, the districts are homeomorphic to
the unit disk. The only exception to this requirement is when the state
in question is non-contiguous. In that case, a district may be made up
of subsets of non-contiguous parts of the state.

• Districts contain roughly the same number of voters. The U.S.
Supreme Court considers a deviation of up to 10% between districts
as being “essentially equal” [1]. Following this, we require that the
populations of each of our districts to be within 5% of the ideal value,
which is the total population of the state divided by the number of
districts.
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• Few counties are split between multiple districts. Counties are
a natural geographic separator, and can act as an easy way for most
people to tell which district they live in.

• Districts have high roundness. We wish to find a districting plan
such that the component districts are as round as possible.

• Intra-county district lines fall along less populated areas. We
wish to ensure that no matter where you live, it is likely that your
neighbors are in the same district if they live in the same county.

We will have to balance these criteria, and assess which are the more
important ones.

3 General Definitions

Before we can define the optimality criteria in detail, some common defini-
tions are needed.

Definition (State). A state R ⊂ R
2 is the union of one or more sim-

ply connected regions and in this problem must be completely divided into
districts.

In most cases, a state is a single contiguous region. Throughout this
paper, we will be particularly interested in the case of New York State.

Definition (Population Density). The population density function ρ(x, y),
takes all of R as its domain, and is the measure of the average number of
voters per unit area.

It follows that the total population of a state can be written as

P =

∫ ∫

R
ρ(x, y)dA (1)

The population density in New York State ranges over four orders of
magnitude, from 3.1 people per square mile in Hamilton County, to just
under 67,000 in the heart of New York County. [2]

Definition (District). Consider a partition {Di} of R into N mutually
disjoint subregions. Each of the Di is called a district.

Definition (Mean District Population). The mean district population
(MDP ) is the total population of the state divided by the number of districts
desired.
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The number of districts, and thus representatives, per state is determined
by a Congressional Appointment algorithm with which we are not concerned.
The number of voters per district varies, but is usually in the range of
600,000-700,000 people [3].

The number of voters in a district should be roughly equal to the MDP .
The number of people per district can be written as

∫ ∫

Di

ρ(x, y)dA ≃ MDP (2)

Definition (County). Each state R has a distinct partition into M mutu-
ally disjoint regions Ci. Each is called a county.

The partition of a state into counties is treated as constant for the pur-
poses of this problem, which makes counties a useful geographical identity
for voters. In general, there are more counties than districts.

Definition (Gerrymandering). Gerrymandering is the partitioning of a
state into districts in a manner likely to favor the election of a particular
party or candidate.

In most cases, gerrymandering is done to maximize the number of state
seats in the House of Representatives for a given party. This can be done
by lumping voters that prefer opposing parties into “throwaway” districts,
so as to minimize their representative voice. The term is often associated
with strangely-shaped districts.

4 Model: A Two Stage Approach

We consider county lines to be a preferable delineation between districts,
whenever feasible under the criteria of equal population. It is thus natural
to use a two stage modeling approach, in which we allocate counties to or
among districts in a State Level Districting Algorithm (SLDA), creating
remainder counties, which are optimized using a County Level Districting
Algorithm (CLDA). The state badness is minimized or nearly minimized in
the state level optimization, and the county badness is minimized or nearly
minimized during county level optimization.

4.1 Defining Optimality

We define optimal solutions in terms of badnesses, and seek to minimize
some combination of them. Some of our metrics for “badness” apply only
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at the county level†, and others apply at both simulation levels.

• Districts are simply connected.

Definition (Connectedness Badness Bcon). The connectedness
badness Bcon is a measure of a district’s connectedness within a county.

Bcon =

{

∞ if the district is not simply connected;
0 otherwise.

(3)

• Districts contain roughly the same number of voters.

Definition (Population Badness Bp). The population badness Bp

of a district is an infinite potential well centered on the ideal district
population for the state, such that

Bp =

{

∞ if |∆Pdistrict| ≥ α(MPD);
(∆Pdistrict)

2 otherwise.
(4)

where ∆P is the deviation of total district population from the MPD,
and α is the absolute limit on population deviation (generally taken to
be 5%, as previously mentioned).

• Few counties are split between multiple districts.

Definition (Cutting Badness Bcut). The county-level cutting bad-
ness is defined as the number of districts over which that county must
be split. The state-level cutting badness Bcut is this value summed over
each county.

• Districts have high roundness.

Definition (Eccentricity Badness Be). The eccentricity badness
Be of a district within a county is the ratio of district’s perimeter to
its area.‡

Be(district) =
Perimeter(district)

Area(district)
(5)

• District lines fall along less populated areas.

†Or to the subset of a district within a county.
‡This is similar to sphericity in mathematics, and the inverse of the hydraulic radius in

fluid dynamics, but is not quite equivalent to either.
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Definition (Boundary Badness Bb). Boundary badness acts as an
approximation of the number of voters living near a district division
line. The boundary badness Bb of a district within a county is the
path integral of population density ρ(x, y) over the boundary C of the
district, when that boundary does not fall on a county line.

B =

∫

C
ρ(x, y)ds (6)

The badness metrics above are appropriate at different times.

• The total state-level badness depends only on how many counties
are divided between multiple districts, assuming the created districts
are contiguous and have the appropriate population level.

Definition (State-Level Badness Bstate).

Bstate =
∑

districts

(Bcon + Bp) +
∑

counties

Bcut (7)

In practice, as long as the population is within the given tolerance,
and districts are formed by a contiguous set of counties, we are really
only interested in minimizing the last term, and can treat the first two
as constraints when considering possible divisions on the state level.

• Given a number of districts between which to divide a county, the
county-level badness depends on the shape, boundary lines and
population associated with those districts.

Definition (County-Level Badness Bcounty).

Bcounty =
∑

districts

(ĈbBb + ĈpBp + ĈeBe) (8)

The constants Ĉb, Ĉp, and Ĉr define the relative importance of each
badness to the total county badness. We will choose them so that the
contributions from each badness are of the same order.

We will tackle these problems one at a time, first dividing up counties
into districts while ensuring that (7) is minimized, and then minimizing (8)
on the county level.
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4.2 County Graph

To divide the state into districts along county lines with a rigorous algorithm,
we will need a mathematical description of the counties within the state.

Definition (County Graph). Consider an undirected graph such that each
county corresponds to a node with weight equal to that county’s population.
An edge exists between two nodes if the counties share a common border.
The graph created by this mapping is known as the county graph.

4.3 Population Density

We would like to model the population density ρ(x, y) within a county in a
way that is straightforward but captures the salient features of dominating,
high-density cities and low-density countryside. Our model depends on the
following assumptions.

• Urban population can be concentrated into radially symmet-
ric cities. This assumption is supported by common familiarity with
large cities.

• Countryside population is uniformly spread out. We feel com-
fortable ignoring the subtle fluctuations in population around small
villages and so forth.

• Urban population center density functions are Gaussian dis-
tributions. In particular, the “radius” of a city varies positively with
its population.† We will revisit the ramifications of this assumption
below.

• Only large cities matter. To model this fact, we introduce cities in
decreasing order of population, until over half the population of the
county is represented. We note that more or less cities can be added,
on a county-per-county basis.

• Urban counties have a constant population density. In partic-
ular, the counties that make up boroughs of New York City are too
densely packed and too small to have anything other than a constant
population density function.

†There are more complicated models in the literature, but “positivelty” is good enough
for now.
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Applying the above, let the Gaussian population density function
of a city c be described by a position ~rc, an amplitude Ac, and Gaussian
parameter σc. Let ρb be the background population density in the country-
side.

Definition (Population Density Function). The value of the population
density function at any point ~r within a county is given by

ρ(~r) = ρb +
∑

c ∈ cities

Ace
−(~r−~rc)2/σ2

c (9)

We now confront the correlation of “radius” with population. For ease
of algebraic simplicity, let the “intensity” of the Gaussian profile vary as the
third root of the population. The total population contribution to a county
from a city is given as

∫ θ=2π

θ=0

∫ r=∞

r=0
Acr e−r2/σ2

c drdθ = σ2
cπAc = Pc (10)

If Ac = K(Pc)
1/3, then algebraic manipulation and sampling of a few

cities in New York according to 2000 U.S. Census data [2], gives

Ac = K(Pc)
1/3, σc =

(Pc)
1/3

√
πAc

, K = 42
people2/3

mile2 (11)

This is enough to fully describe a city in terms of its population alone,
and is good enough for our purposes.

5 State-Level Division Algorithm (SLDA)

In the first stage of our solution, we allocate counties to districts such that
each district satisfies the population constraint. The output of this step is
a list of districts, each of which contains a number of counties or county
pieces.

SLDA is a divide-and-conquer algorithm. It keeps on breaking the county
graph into two pieces of equal population and assigns half of the districts
to each. At some point, it will either get down to one district, which has to
contain all of the counties in its graph, or one county, which has to be split
into the appropriate number of districts.

At any given step of the algorithm, we have a subset of the counties
which form a connected subgraph G of the county graph, and we have a
certain number of districts D to divide them into. SLDA attempts to find
a subgraph G′ of G satisfying the following conditions:
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Split graph G into N districts

Assign all
remaining counties
to the single district

only one district

Split the single county
into the appropriate
number of districts

only one county

Find the subgraph G’
whose population is

closest to half of the total

otherwise

END Split the graph into G’ and G \ G’

Are both G’ and G \ G’
within the size tolerance?

Recur on both pieces

Yes
Rearrange border counties

to make the populations work

No

Figure 1: A flowchart representation of SLDA, which is a divide-and-conquer
algorithm. The base cases are when there is only one district or only one
county. Otherwise, the graph is split into two pieces of approximately equal
population. If necessary, border counties are rearranged. Then SLDA is run
on both halves recursively.



Team #2048 Section 5 Page 13 of 31

• G′ is connected

• G \ G′ is connected

• The total population contained in G′ falls between 95% and 105% of
(MDP * ⌊D

2 ⌋).

• The total population contained in (G\G′) falls between 95% and 105%
of (MDP * ⌈D

2 ⌉).

It is not always true that such a split exists. In this case, a county must
be split, with parts of it assigned to both halves. The algorithm will find the
split that is closest to meeting the population constraints, and determine how
much population it needs to gain or shed to have it and its complement meet
the constraints. In this situation, the border counties are shuffled and split
between the two halves until both satisfy the population conditions. Any
counties that are split in this manner are treated as independent counties
from then on; they just happen to be part of the same physical county. †

Once a split meeting the constraints is constructed, the algorithm is
called recursively on each subgraph (G′ and G \G′), assigning each of them
half of the districts.

There are two base cases. If there is only one district to construct, then
it must contain all of the counties given to it. Similarly, if there is only
one county, then it must be split into the appropriate number of districts.
Finally, to construct a solution, the procedure is initially run on the entire
county graph for the desired number of districts.

5.1 Valid Splits

The previous discussion has glossed over the issue of finding a valid split
(or, if none exist, a split which is closest to meeting the constraints). This
is an instance of the graph partitioning problem, which is NP-Complete, so
a heuristic-based approximation must be used.

Each county in G is used as a possible “seed” for G′. At each step, one
county adjacent to the current G′ is added to G′, so long as its removal
would not disconnect G \G′. This process stops when the population of the
current G′ is too large. The constructed G′ whose population is closest to
the ideal value (MDP * ⌊D

2 ⌋) is then chosen to be the split.

†It is still not necessarily possible to meet the population constraints of both G′ and
its complement simply by moving around population on the border. Our implementation
of SLDA just gives up and reports a failure. More sophisticated algorithms for population
transfer could get around this issue.
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The state space of this problem is quite large and has a very large branch-
ing factor. This branching factor is associated with the selection of a county
to add to the current G′. The current implementation solves this problem
by selecting any random adjacent county that leaves the G \ G′ connected.
This causes a problem in that solutions found by this algorithm may result
in many more (possibly avoidable) county splits. To get around this, multi-
ple possible solutions are generated and the best sent is to the county-level
division algorithm for evaluation.

6 SLDA Analysis

The results of SLDA are surprisingly good considering the algorithm’s greedy
nature. On small test cases (containing ten to twenty counties), the algo-
rithm failed to find a valid solution about 30% of the time. When successful,
however, the following trends appeared:

• The majority of the counties are not split. In any given district-
ing plan, about half of the districts consist entirely of unsplit counties.

• Few counties are split more than once. Except for counties whose
populations support more than two districts, only one example of a
county being split into more than two pieces arose in tens of test
runs. This is most likely because border counties are considered in
descending order of size, so a county must be very large to be split
twice.

If N is the number of counties and D is the number of districts to split the
state into, then the runtime of this implementation of SLDA is O(N3 lg D)
in the worst-case. The lg D factor comes from the recursive bisection of the
graph, and the N3 factor comes from the N attempts to form a valid split,
which in this implementation takes at most O(N2) steps each.

6.1 Optimality of Solution

In general, it is difficult to compare the SLDA solution to the optimal so-
lution for any non-trivial case because the solution space is so large that
it is infeasible to completely search it. We provide one example of a fairly
trivial case in which the SLDA finds the optimal solution. This also acts to
demonstrate the strengths and weaknesses of the county graph representa-
tion used. In a single test run, the solution which was found, while optimal
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Figure 2: Two optimal solutions for a 6 county system being partitioned
into 3 districts. Because it is only based on county connectivity, the SLDA
tends to find these solutions with equal probability. It is clear, however,
that the solution on the right has a lower eccentricity badness, making it
preferable.

when trying to minimize the number of counties to split, it does not take
into account eccentricity badness. Another solution which also only splits
one county, but has much lower eccentricity badness, is shown in figure 2.

SLDA is an instance of a recursive bisection algorithm, which has been
used to solve similar problems, such as the p-way graph partitioning problem.
That problem is NP-Complete, but on planar graphs, a recursive bisection
approach has a worst-case approximation ratio of Θ(

√

n/p), where n is the
number of nodes in the graph and p is the number of partitions. [4] A similar
result holds for the SLDA.

6.2 Strengths

• Fast. Each run of the algorithm takes less than one second to com-
plete even on relatively modest hardware. Since the algorithm is non-
deterministic, this means that many runs can be completed in a short
amount of time and then the best results can be extracted.

• Low Number of Splits. The number of counties that are split is
relatively low, and most counties that are broken up are split into only
two pieces. This means that voters will in general have an easier time
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determining which district they belong to, as compared to existing
district maps. This is discussed later.

• Intuitive. The algorithm is fairly easy to grasp and to explain – the
“divide” step of the divide-and-conquer algorithm involves breaking
the graph into two equally sized halves, and the “conquer” step is
trivial.

6.3 Weaknesses

• High Failure Rate. When running this algorithm on small hand-
generated test cases, it gave up and reported failure a significant por-
tion of the time. That said, this is by no means a show-stopper because
of the extremely fast execution time. If it fails, rerun it until it suc-
ceeds.

• Ignores Geography. The SLDA does not take into account any
geographical properties of the counties or districts, and as such com-
pletely ignores the shape of any districts it creates. This means that
the districts it creates may be simply connected and ugly at the same
time. In practice, districts created by the algorithm tend to be fairly
compact even though there is no explicit constraint to this effect.

7 County-Level Division Algorithm (CLDA)

The county level division algorithm (CLDA) begins by discretizing the con-
tinuous problem to a rectangular grid. It attempts to arrive at the optimal
solution through a simulated annealing algorithm. Specifically, it divides
a county into some number of district remainders, which are fractions
of districts allocated from this county during the SLDA. The sum of the
badnesses contributed from all district remainders is minimized.

First, a county is divided into equally sized grid squares on an n-by-
m rectangular grid.† Each square is assigned a population value using our
population model in Section 4.3, evaluated at the center of its location.

District remainders are represented as a list of points on their borders,
and a count of the total population and area in their interior. Each is
updated in a differential manner every time the ownership of a grid square
changes.

†In running time and space estimates, we will take n to mean max(m,n).
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Pick random region

Attempt to distribute
 free block

Repeat while there exist
non-distributed blocks

END

After all blocks
 distributed

Initialize grid,
choose seed location

Initial state

Propose neighboring state

Set system temperature

Lower system
 temperature

Cool system to reach
 locally optimal solution

Raise system
 temperature

Give system a kick
 to escape local minimum

Decrease
 in total energy?

Evaluate energy
 of new state

No

System updates

Yes
No, but allow unfavorable

 energy transition.

Re-evaluate
 temperature

Repeat N times
(At this temperature)

END

Convergence to
 optimal solution

Figure 3: A flowchart representation of CLDA, a simulated-annealing pro-
cess. Ideally, a solution close to the global optimum is reached.
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7.1 Simulated Annealing

The simulated annealing process, described in Ingber [5], proceeds by slowly
relaxing the system into a low badness state. The entire process is better
visualized in Figure 3.

• A temperature T is chosen for the system which represents the sys-
tem’s ability to enter high-energy states.

• At each iteration, a district and neighboring square S are chosen at
random.

• The change in the sum of the badness values of every district in
the county ∆Bcounty resulting from assigning S to its new district is
calculated.

• This change is accepted with probability

p =

{

1, ∆Bcounty ≤ 0

e
−∆Bcounty

T , ∆Bcounty ≥ 0
(12)

• The process repeats. Over time, T is gradually lowered in an attempt
to get the system to settle into a low badness state.

Under simulated annealing, systems will tend towards low badness states.
In general, when T is high, the system is given a chance to escape its current
potential well. As a final step, running the simulation with T ≃ 0 ensures
that only changes which strictly improve the county badness are made.
This greedy approach at the end of a simulation run ensures that the state
will move towards the bottom of any well it is in.

7.2 Initial Division

An initial division of the grid into variable-population districts is accom-
plished with an organic growth approach, as diagrammed in Figure 3.

• For each district, a single grid square is designated the entry point
into the county.

• A district is chosen at random to gain a neighboring grid square.
Which district is chosen is weighed towards the proportion of this
county’s population that the district needs.
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Figure 4: Plot of badness metric versus number of iterations during a typical
run of the CLDA. Every thousand iterations, T either decreases incremen-
tally or gets a “kick”. The lowest badness is generally reached at the end of
the process.

• If the grid square is not owned by any other district, it is assigned
to this one. The district internally updates its area, perimeter and
various associated badnesses.

• The process iterates until all grid squares have been claimed.

Since the process is random, each district seems to grow organically
outwards from its entry point, meeting other districts somewhere in the
middle (as dictated by their relative population needs). Since every grid
square is reachable by some chain of neighboring squares, the probability
that the grid is not filled goes to zero as the number of iterations is increased.

7.3 Temperature Schedule

We allow the system to remain at a given temperature for O(n2) terms so
that, on average, every possible exchanging of border squares is proposed
O(n) times. This allows each border square to move enough times to travel
across the screen O(1) times.

According to Hajek [6], the temperature schedule required for weak
ergodicity is given by

T (I) =
T0

log(1 + I)
(13)

This method is meant to model the natural cooling process of an object,
with T0 setting the scale of typical changes in badness. In particular, T0
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Figure 5: Typical result of the CLDA. The initial seeded state and the
eventual annealed state are the left and right diagrams, respectively. Note
the prevalence of straighter lines and decreased divisions of highly populated
areas (cities).

must be high enough to explore all regions of the state space towards
the beginning of the simulation. This implies that changes in T0 between
annealing simulations, when T0 is sufficiently high, will have little noticable
effect.

In our model, we used a change in temperature over time ∆T
∆I approxi-

mating the one proposed in (13), but we did not explore the optimal value
of T0.

8 CLDA Analysis

CLDA attempts to find a minimum which is not susceptible to improvement
by large or small deviations. In practice, it does this accurately and quickly,
with marked decreases in the county badness (a quantitative metric) and
marked improvements in the visual shape of the counties (a qualitative met-
ric). Note that:

• At no point during our simulation testing did the CLDA fail to decrease
the county badness by a significant amount. An example of the rate
at which badness decreases is shown in Figure 4.

• The divisions produced by iteratively running the CLDA results in
intuitively correct districts. They tend to avoid cutting through
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cities, preferring straight lines to jagged, winding paths and preserving
the relative population. An example on a simulated six-city county is
shown in Figure 5.

Our algorithm benefits significantly from design choices made during im-
plementation. In particular, we maintain a list of border squares and are able
to select from them at random without considering region interiors. Every
border square therefore has the chance to be swapped into a different region
on the order of every O(n) iterations. Since the furthest a border square
can travel to reach an optimal solution is n grid squares, our algorithm can
make the solution settle to a minimum in O(n2) iterations.

We know of a similar attempt to use an energy-minimization approach
to county districting. Chou [7] uses a Potts-inspired model to district Taipei
city over a grid. However, the model he uses must iterate through O(n2) grid
squares at random in order to swap border squares an average of once each,
and thus requires O(n3) iterations before reproducing the optimal solution.

8.1 Optimality of Solution

We make no attempt to compare this model to the optimal solution found
through complete enumeration of the solution space. Instead, we claim
that the CLDA produces “close to optimal” results through a probabilistic
argument.

As the time spent cooling increased, the chances of enumerating all mean-
ingful states approaches one, making the system weakly ergodic. Theoret-
ically, the number of iterations required to claim that the model explores
a large fraction of the state-space is quite large, but because of the speed
with which our model runs (about a thousand iterations per second for a
thirty-by-thirty grid) and the concave-up nature of the badness curves over
time, we can say that there is a high probability we reach a near optimal
badness.

An excellent example of an optimal solution can be seen in Figure 6. The
boundary lines, after simulated annealing, are the optimal solution within
the grain-size of the problem.

8.2 Strengths

• Efficient. As mentioned above, our algorithm requires O(n2) itera-
tions to reach equilibrium. The closest competitor from the literature
requires O(n3). This is a significant improvement.
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Figure 6: An example of our simulated annealing process for four districts
over a constant population density county. Ten thousand iterations were
performed, with the system “temperature” decreasing from 2.0 to .5.

• Quick Badness Computation. Badness is updated differentially.
Any time a change in districting is made by swapping ownership of a
square, the differences incurred on Bcounty are incurred on the total.
This makes each iteration run in O(1) time.

• Roughly Ergodic. By design, our system explores significant por-
tions of the state space, and can later revisit optimal state points.

• Easy to Augment. It is easy to add more or different badnesses.

8.3 Weaknesses

• Complex to code. While the algorithm is quite simple to describe,
the specific implementation is quite complex, taking over 1000 lines
of code to implement. In contrast, a Potts model implementation is
much simpler.

• Anisometric. By using a square grid, we have made certain directions
more favorable than others. On the bright side, this helps districts
follow latitude and longitude lines.

• Statewide Badness Not Considered. Though we seeded initial
divisions in locations close to county lines, we made no effort to make
sure districts were contiguous on the state level (though they certainly
were on the county level).
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9 Implementation

9.1 State Level Division

The state-level division algorithm was implemented in C++, using the fea-
tures of the C++ Standard Template Library to ease the implementation
while still ensuring a fast runtime. The code was written using a straight-
forward doubly recursive approach: one level was for the main partitioning
algorithm and the lower level was for finding the best split, used as a sub-
routine of the first level.

When compiled with maximum optimization, each execution of the al-
gorithm on the New York State data set took about a quarter of a second
to run, whether successful or not. The code was run on a 2 GHz Athlon 64
machine with 2 GB of RAM.

9.2 County Level Division

We implemented the county-level algorithm in Python, using the Scientific
Python and PyLab libraries as a computational heart and display utility,
respectively. We wrote some thousand lines of code with an object-oriented
design philosophy. As regions grew and collapsed, they modified their in-
ternal representation to keep track of changes in the three types of badness,
which depended on the perimeter, area, fractional population and border
population density.

The runtime was quick: a ten-thousand iteration annealing routine per-
formed on four districts fighting over a grid of granularity thirty-by-thirty
took just a few seconds to run on a 1280 MB RAM, 1.7 GHz Pentium M
machine running Ubuntu Linux 6.06. An appendix of the more important
parts of our code has been included at the rear of this document.

10 New York State Results

10.1 State-Level

For the purposes of the state-level algorithm, the only data necessary are
the population of each county, adjacency lists showing which counties border
each other, and the number of desired districts. Population data was taken
from the 2000 US Census and border data was entered from a New York
State county map.

SLDA was run several times on the New York State data set until the
first success, which is roughly shown in Figure 7. The majority of counties
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Figure 7: The map initially produced by the SLDA is shown here. Adjacent
counties that have the same color are part of the same district. Counties
that are split have more than one color; the area on each side of the split
roughly indicates the proportion of the population assigned to each district.

were not split at all and therefore did not need any additional processing.
The counties that were split were sent to the county-level algorithm along
with the relative sizes of the pieces.

10.2 County-Level

The state-level solution described above split thirteen counties between dis-
tricts. The number of districts ranged from two to four. To model the county
population density distribution, we projected the county onto a rectangle of
equal aspect ratio and equal surface area. We used [8] to measure the rough
height and width of each county. Then, starting with the biggest cities, we
placed Gaussian distributions on the rectangular maps until more than half
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Figure 8: The current districting in New York State. We see that our
proposed redistricting offers a large improvement.

of the county’s population was represented. The rest became background
population density ρb and was evenly distributed in the county. We used
[9] to obtain total county population, city population and county area data.
An example of the simulation is given in Figure 9.

We used the seeding procedure described above to come up with an initial
division, starting each seed closest to the county line to which the district in
question was connected. Then, we used the simulated-annealing algorithm
to optimize the badness of the divisions, with several “kicks” along the way.
An example of the resulting division is given in Figure 10.

11 Sensitivity Analysis

11.1 SLDA Sensitivity to Population Deviation

We can map both the failure rate of the algorithm and the number of split
counties against the allowed deviation in population between districts. The
results are shown in Figure 11.

As the tolerance increases, the failure rate and number of split counties
required both decrease, which makes sense. The average number of split
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Figure 9: The seven most populated towns in Orange County are identified,
and turned into Gaussian distributions along a square grid of the same area.

Figure 10: A relatively unequal (due to the population needs) distribution is
created through seeding and simulated annealing. The result of the CLDA
is then qualitatively translated into a district division on the original map.
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Tolerance Failure Rate Split Counties Forced Splits

2.5% 56.5% 12.63 9
5% 43.9% 12.41 9
10% 39.9% 10.86 9
20% 31.4% 9.10 8
30% 25.2% 8.51 8

Figure 11: The percent tolerance for deviations in population between coun-
ties, compared to the average failure rate of the algorithm, and the average
number of counties split over a large number of successful runs. Forced splits
are those made in counties with a population larger than the ideal district
population. The “default” threshold is 5%.

counties, however, is somewhat misleading; some of the counties need to be
split because they are too large to fit entirely in one district. The number
of counties that need to be split is in the last column. Subtracting this from
the previous column indicates that the number of counties that need to be
split is extremely small compared to the number of counties overall, even in
the case where the tolerance is more restrictive than required.

The failure rate is an artifact of the SLDA implementation used here,
which elects to fail instead of performing more and more complex operations
to ensure some valid solution is constructed.

11.2 CLDA Sensitivity to Arbitrary Parameters

We have two parameters defining the importance of the three different bad-
nesses incorporated into county badness (the third merely defines the scale
of temperature), and any number of parameters defining the initial temper-
ature, number of steps, etc, for the annealing process.

We set the values of parameters Ĉb, Ĉp, and Ĉr in a manner which creates
district shapes we find pleasing to the eye, and which are very close to the
ideal district population.

The parameters for the annealing process are easier to set. We use a
three temperature model which we run at varying temperatures, with the
number of iterations at each level being I ≫ n2. This is the range of I for
which each boundary position can trace a path with path length greater than
n with high probability. With a sufficiently high starting temperature and
large number of iterations, we found that various annealing runs converged
to similar optimal badnesses with little sensitivity to the particular values
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of the parameters.

12 Possible Improvements

12.1 SLDA

There are several obvious improvements that could be made to the current
implementation of SLDA:

• A more sophisticated county rearrangement algorithm would
ensure that a valid solution to the statewide problem could be con-
structed in all cases.

• When growing G′, prioritizing counties by their number of exist-
ing connections to G′ would likely make the districts more compact
and therefore rounder.

12.2 CLDA

While our county-level solutions seem quite good, there are a number of
improvements which could be made easily, with little bearing on the effec-
tiveness of the model.

• We currently do not use a diagonal distance measure, instead opt-
ing for sum of side lengths of every block included.

• The amount of population data included is relatively small. In-
cluding more cities and towns will yield both more accurate and more
interesting solutions.

• Use of a hexagonal grid would also reduce anisotropy.

• A ergodic temperature schedule set by algorithm as opposed to
experience might lead to better results. Making a careful estimation
of T0 and using the schedule outlined in (13) would cause our system
to be weakly ergodic.

• Suppress inferior local minima using stochastic tunneling, described
below.

• Include a badness associated with district lines off of city lines and
other existing boundaries, to further simplify for people what dis-
trict they live in.
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12.2.1 Stochastic Tunneling

In general, simulated annealing processes are adversely sensitive to the
prevalence and depth of local (i.e. non-global) minima. Wenzel and Hamacher [10]
propose a way to overcome this obstacle called stochastic tunneling.

Let E(X) be the energy function of state X. After the annealing process
has converged to a suspected local minima with energy E0, we update the
energy function as follows:

E′(X) = 1 − e−γ(E(X)−E0) (14)

This new function will suppress all local minima of a higher energy
than the current one, and accentuate local minima of a lower energy.
Above, γ is a tunneling parameter that magnifies the transformed energy
of potential wells deeper than the current one. We then seed a new starting
position and begin the simulation again.
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13 Conclusion

We have formed an unambiguous metric for what makes a simple and effec-
tive districting plan within a state. We have designed a two-level algorithm
which attempts to create an optimal partition of a state into districts. We
have implemented this solution in Python and C++, and used it to propose
a redistricting of New York State.

Our state-level simulation has demonstrated a high level of effective-
ness in avoiding county divisions between districts whenever possible. Even
though it does not explicitly consider geometric criteria, the resulting dis-
trict maps show a high degree of compactness.

Our county-level simulation has demonstrated an ability to reach mini-
mal or near-minimal badness solutions. It provides an improvement over the
Chou solution discussed earlier in terms of running time, while considering
a finer (sub-county) level of detail.

Both solutions are simple in theory, and relatively simple to program
and use. We believe that, if the data about towns and cities were improved
in quality and quantity, most voters would find our model’s plans quite
acceptable for New York’s congressional districting needs.

Finally, we can express our districting method and plans to the layman
easily as follows:

To avoid gerrymandering, we have proposed a redistricting of
your state which

1. Avoids splitting any one county between multiple districts
whenever possible, and

2. Tries to make the district lines as simple as possible while
not cutting up cities and towns, when a county must be split.
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