
Convex hulls solve SVMs Holmes

1 Convexity explains SVMs

• The convex hull of a set is the collection of linear combinations of points
in the set where the coefficients are nonnegative and sum to one.

• Two sets are linearly separable if and only if their convex hulls don’t
intersect.

• To find the SVM boundary between two sets, pick from their convex
hulls a pair of points (u, v) that are closest together, and draw the bound-
ary that (1) passes through their midpoint, (2) is normal to the line join-
ing them.

• The points u and v can be expressed as linear combinations of their
respective sets. The normal vector n is their difference u − v, i.e. the
difference between those linear combinations. That’s where this famil-
iar formula comes from:

n = ∑
positive

αi~xi − ∑
negative

αj~xj

• As long as the convex hulls don’t intersect, the points (u, v) that are
closest together will be on the surface of their hulls. The surface of
the hull corresponds to linear combinations of points where some of
the points have zero coefficients. (Equivalently, the “faces” of the con-
vex hull are the linear combinations of the points at the face’s vertices,
with zero coefficients for all other points. Edges have zero coefficients
wherever either of its neighboring faces do, and each vertex has all zero
coefficients—except a 1 for itself.)

• Each point in a convex hull is a linear combination whose coefficients
sum to one. That’s why when you add up the coefficients of u and
subtract the coefficients of v, you get zero1.

∑
positive

αi = ∑
negative

αj = 1

1The sum of the positive alphas is 1 in this paper (they’re convex coefficients), but not in
6.034. In this paper, the normal vector n is geometric; it’s the displacement between the two
gutters. In 6.034, the normal vector w has a length that satisfies different conditions. In that
setting, the right equation is ∑positive αi = ∑negative αj =

1
2 ||w||2

1



Convex hulls solve SVMs Holmes

2 Results

1 Convention In the following discussion, we assume some particular Rd as
our underlying inner product space.2 The inner product of x and y is written
〈x, y〉.

2 Definition Fix two points x and y. The path from x to y is the function
g : [0, 1] → Rd sending t 7→ (1− t)x + ty, and the segment joining x and y is
its image.

3 Definition The convex hull of a finite set X ⊆ Rd is the set H(X) con-
sisting of all linear combinations of members of X where the coefficients are
nonnegative and sum to one.

4 Remark Every convex hull is closed and compact. After all, the set that
generates the hull is presumed finite.

5 Definition Given n, p ∈ Rd with n 6= 0, we define the boundary B(n, p) to
be the set

B(n, p) = {x ∈ Rd : 〈n, x− p〉 = 0}.

6 Remark (Properties of boundaries.)

1. Every boundary is closed.

2. For any boundary, p ∈ B(n, p).

3. The boundaries B(n, p) and B(m, q) are equal whenever q ∈ B(n, p),
and m = αn for some real number α.

7 Definition A boundary separates sets X and Y if these two conditions hold:

1. For each x ∈ X and each y ∈ Y, the segment joining x and y intersects
the boundary.

2. Neither X nor Y intersects the boundary

Relatedly, we say that X and Y are separable if there exists a boundary which
separates them.

2The proofs will work in all of them!
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8 Lemma A boundary B(n, p) separates sets X and Y if and only if the func-
tion f (z) = 〈n, z− p〉 is nonzero throughout X and Y, having the same sign
for all points in X, and the opposite sign for all points in Y.

Proof. First, observe that a point is on the boundary if and only if f sends it
to zero; hence, f is nonzero throughout X and Y if and only if neither X nor
Y intersects the boundary.

Second, fix points x ∈ X, y ∈ Y, and let g be the path between them.
Observe that the segment joining x and y intersects the boundary if and only
if f is zero at some point on the segment, which is true if and only if one
of the following holds: f has opposite signs at x and y (by the intermediate
value theorem applied to f ◦ g) or f is zero at x, or f is zero at y (because
segments contain their endpoints).

Third, observe that f has the same sign throughout X and the opposite
sign throughout Y if and only if for each pair of points x ∈ X and y ∈ Y, f (x)
and f (y) have opposite signs.

Combining these three observations yields: “ f is nonzero throughout X
and Y, and f has the same sign for all x ∈ X and the opposite sign for all y ∈
Y” if and only if “X and Y don’t intersect the boundary, but every segment
between them does.”

9 Theorem A boundary separates finite sets X and Y if and only if it sepa-
rates their hulls.

Proof. (⇐). Hulls contain their finite sets.
(⇒). Let f be as in the previous theorem, and observe that if ζ is a con-

vex combination of points in a finite set Z, then f (ζ) is that same convex
combination of the f (z). Indeed,

f (ζ) = f

(
∑
z∈Z

ζz · z
)

= 〈n,−p + ∑
z∈Z

ζz · z〉

= 〈n, ∑
z∈Z

ζz · (−p + z)〉

= ∑
z∈Z

ζz · 〈n,−p + z〉

= ∑
z∈Z

ζz · f (z).
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Therefore, since each point in H(X) is a convex combination of points
in X, their images under f have the same sign as the f (x); the analogous
statement holds for each point in H(Y). Hence, by the intermediate value
theorem, each line between the hulls intersects the boundary.

10 Definition The distance between a closed set and a compact set is the
smallest possible value of ||x− y||, where x is a point in the first set and y is
a point in the second set.

11 Lemma (Gutters.) If finite sets X and Y have nonintersecting hulls, and
u ∈ H(X), v ∈ H(Y) are as close as possible, then

1. For each z ∈ H(X), 〈u− v, z− u〉 ≥ 0

2. For each z ∈ H(Y), 〈v− u, z− v〉 ≥ 0

Proof. We prove the first statement; by a symmetric argument (exchanging X
and Y, u and v), the second statement follows.

Suppose z lies in the hull of X. If z = u, the result is immediate. Other-
wise, consider z 6= u in the hull of X, put f : � 7→ 〈u− v,�− u〉, and let g be
the path between u and z.

Now every point on the segment g is in the hull of X since its endpoints
are. Therefore, since (u, v) is minimal, we have ||g(t)− v|| ≥ ||u− v||. From
this, we can derive

0 ≥ ||u− v||2 − ||g(t)− v||2

= 〈u− v, u− v〉 − 〈(1− t)u + tz− v, (1− t)u + tz− v〉
= 〈u− v, u− v〉 − 〈(u− v) + t(z− u), (u− v) + t(z− u)〉
= 〈u− v, u− v〉 − 〈u− v, u− v〉 − 2t〈u− v, z− u〉 − t2〈z− u, z− u〉
= −2t〈u− v, z− u〉 − t2〈z− u, z− u〉

0 ≤ t2〈z− u, z− u〉+ 2t〈u− v, z− u〉

Let’s consider the case where t 6= 0, so we can divide by t, yielding

t〈z− u, z− u〉+ 2〈u− v, z− u〉 ≥ 0

Taking the limit as t ↓ 0 gives our desired result:

〈u− v, z− u〉 ≥ 0.
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12 Theorem If finite sets X and Y have nonintersecting hulls, and u ∈
H(X), v ∈ H(Y) are as close as possible, then the boundary

B
(

u− v,
u + v

2

)
separates X and Y.

Proof. Let u ∈ H(X), v ∈ H(Y) be as close as possible, and put f : � 7→
〈u − v,�− (u + v)/2〉. The above lemma establishes that f (x) ≥ f (u) for
any x ∈ H(X), and that f (y) ≤ f (v) for any y ∈ H(Y). Indeed,

〈u− v, x− u〉 ≥ 0 ⇐⇒ 〈u− v, x〉 ≥ 〈u− v, z〉

⇐⇒ 〈u− v, x− u + v
2
〉 ≥ 〈u− v, z− u + v

2
〉

⇐⇒ f (x) ≥ f (u)

and symmetrically by exchanging u and v, x and y. Therefore, it is enough to
prove that f (u) is positive and f (v) is negative. But indeed,

f (u) = 〈u + v, u− u + v
2
〉 = 1

2
||u− v||2

f (v) = 〈u + v, v− u + v
2
〉 = −1

2
||u− v||2

Since u 6= v, ||u− v||2 is strictly positive.

13 Corollary Finite sets are separable if and only if their hulls don’t intersect.

Proof. (⇐) (Theorem 12).
(⇒). Finite sets are separable if and only if their hulls are (Theorem 9).

Suppose their hulls intersect at w and that some boundary separates them.
Then in particular the segment from w to w intersects the boundary and so w
belongs to the boundary and so the boundary does not separate the hulls—a
contradiction.

14 Theorem (Optimal boundary.) Let X and Y be finite separable sets, and
find u ∈ H(X), v ∈ H(Y) which are as close as possible.

The boundary B = B(u− v, (u + v)/2), which separates X and Y, is op-
timal in the following sense: any other boundary C which separates X and Y
is strictly closer toH(X) orH(Y) than B is.
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Proof. Fix a boundary C = B(m, q). Since C separates X and Y, it must inter-
sect the line between u and v somewhere.

First suppose that C does not intersect at u+v
2 . Then it must intersect at

some other point w = (1 − t)u + tv where t 6= 1
2 . But ||w − u|| + ||w −

v|| = ||u − v||, so when t 6= 1
2 , we either have ||w − u|| < 1

2 ||u − v|| or
||w− v|| < 1

2 ||u− v||. Since the distance from B to either hull is 1
2 ||u− v||,

we’ve established the result for this case.
Next, suppose that C does intersect at u+v

2 . This means that C is equivalent
to B(m, u+v

2 ) (Remark 6). Observe that the distance between B and either hull
is 1

2 ||u− v||, and that this minimum is attained by u and by v. We will show
that C must be closer to u than B is, which will establish the desired result.

Define

u′ = u−
1
2 〈u− v, m〉
〈m, m〉 m

(so that u′ is the “shadow of u cast on C”). We have that u′ ∈ C, since 〈m, u′−
u+v

2 〉 = 0. It follows that the distance between u and u′ is an upper bound for
the distance between C andH(X).

By the Pythagorean theorem, the distance between u and u′ is related to
the distance between u and (u + v)/2 as follows:

||u− u′||2 =

∥∥∥∥u− u + v
2

∥∥∥∥2

+

∥∥∥∥u′ − u + v
2

∥∥∥∥2

||u− u′|| ≤
∥∥∥∥u− u + v

2

∥∥∥∥
=

∥∥∥∥u− v
2

∥∥∥∥ .

If the inequality is strict in the second line, we have our desired result—C
is closer to u than B is; hence (since u is the closest point in the hull to B)
closer to the hull of X.

Otherwise, equality holds in the second line and so the term ||u′ − (u +
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v)/2||2 from the first line vanishes. We observe∥∥∥∥u′ − u + v
2

∥∥∥∥2

= 0 ⇐⇒ u′ =
u + v

2

⇐⇒ u−
1
2 〈u− v, m〉
〈m, m〉 m =

u + v
2

⇐⇒ u− v
2

=
1
2 〈u− v, m〉
〈m, m〉 m

⇐⇒ u− v =
〈u− v, m〉
〈m, m〉 m

⇐⇒ m is a nonzero multiple of (u− v)

But if m is a nonzero multiple of u− v, and (u + v)/2 ∈ C, then B = C
(Remark 6).

7


