Understanding X-rays: The electromagnetic spectrum

Equation:

\[E = h \nu = \frac{hc}{\lambda} \]

where,

- \(E \): energy,
- \(h \): Planck's constant,
- \(\nu \): frequency
- \(c \): speed of light in vacuum,
- \(\lambda \): wavelength

Equation:

\[E\lambda = hc = 1.2398 \]

if the units are keV and nm

Equation:

\[E (\text{keV}) = \frac{hc}{\lambda (\text{nm})} = 1.2398/\lambda (\text{nm}) \] or,

\[\lambda (\text{nm}) = \frac{hc}{E} = 1.2398/E (\text{keV}) \]

Example:

- \(\lambda_{\text{BeK}\alpha} = 11.27 \text{ nm} \);
 Hence, \(E_{\text{BeK}\alpha} = 1.2398/11.27 = 0.11 \text{ keV} \)

- \(E_{\text{UL}\alpha} = 13.61 \text{ keV} \);
 Hence, \(\lambda_{\text{UL}\alpha} = 1.2398/13.61 = 0.09 \text{ nm} \)
X-ray production in the EPMA

X-rays are generated by inelastic scattering of the beam electrons by sample atoms

- **Characteristic X-rays: inner shell interactions**
- **Bremmstrahlung (continuum) X-rays: outer and inner shell interactions**
Characteristic X-ray generation

Inner shell ionization through inelastic scattering

followed by electron transition from an outer shell to the inner shell
Condition for ionization: Overvoltage

Overvoltage, $U = \frac{E}{E_c}, > 1$

E: electron beam energy

E_c: critical excitation energy, ionization energy

of the shell in target atom

Best analytical condition, $U=5$

![Graph showing inner shell ionization](image-url)
X-ray energies

<table>
<thead>
<tr>
<th>Shell (energy level)</th>
<th>Electron transition</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sub>VII</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>IV</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>I</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M<sub>V</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M<sub>III</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M<sub>I</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L<sub>III</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L<sub>II</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L<sub>I</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K<sub>I</sub></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X-ray

- **K_α**: L_{II+III} to K_I
 \[E_{K\alpha} = E_{c(K_I)} - E_{c(L_{II+III})} \]

- **K_β**: M_{III} to K_I
 \[E_{K\beta} = E_{c(K_I)} - E_{c(M_{III})} \]

- **L_α**: M_{IV+V} to L_{III}
 \[E_{L\alpha} = E_{c(L_{III})} - E_{c(M_{IV+V})} \]

- **M_α**: N_{VII} to M_V
 \[E_{M\alpha} = E_{c(M_V)} - E_{c(N_{VII})} \]
Characteristic X-ray energy and critical excitation energy

To calculate $E_{c(K)}$:

Start

Rearrange

Substitute $E_{c(L)} = E_{L\alpha} + E_{c(L)}$

Substitute $E_{c(M)} = E_{M\alpha} + E_{c(M)}$

Therefore,

$$E_{K\alpha} = E_{c(K)} - E_{c(L)}$$

$$E_{c(K)} = E_{K\alpha} + E_{c(L)}$$

$$E_{c(K)} = E_{K\alpha} + (E_{L\alpha} + E_{c(M)})$$

$$E_{c(K)} = E_{K\alpha} + E_{L\alpha} + (E_{M\alpha} + E_{c(N)})$$

$$E_{c(K)} \approx E_{K\alpha} + E_{L\alpha} + E_{M\alpha}$$

The energy required to generate $UK\alpha$ must be $> E_{c(K)}$

so the overvoltage > 1

$$E_{c(K)} = 98.4 + 13.6 + 3.2$$

≈ 115.2 keV

Required energy > 115.2 keV

The energy required to generate $UK\alpha$ must be $> E_{c(K)}$ so the overvoltage > 1

$E_{c(K)} = 98.4 + 13.6 + 3.2$

≈ 115.2 keV

Required energy > 115.2 keV
Maximum x-ray production depth (range)

\[R_{\text{x-ray}} = 0.033(E^{1.7} - E_{c}^{1.7}) \frac{A}{\rho Z} \]

(Castaing’s formula)

- \(R_{\text{x-ray}} \): x-ray range (maximum depth)
- \(E \): electron beam energy
- \(E_{c} \): critical excitation energy of target atomic shell
- \(A \): atomic weight
- \(\rho \): density
- \(Z \): atomic number
Maximum x-ray production depth (range)

Characteristic X-ray range increases with increasing E, and decreasing ρ and ρZ.
The characteristic x-ray range is always less than the electron range.
X-ray depth-distribution: the $\phi(\rho z)$ function

$\phi(\rho z)$ at depth $z = \text{intensity from depth ‘z’ divided by } \phi(\Delta \rho z)$

where, $\rho = \text{density}$, $z = \text{depth}$,
and $\phi(\Delta \rho z) = \text{intensity from a free standing layer of thickness ‘}\Delta z’$
Continuum X-ray generation

Produced by deceleration of beam electrons in the electrostatic field of target atoms

Energy lost by beam electrons is converted to x-ray

(Maximum energy of continuum x-rays = electron beam energy)
Continuum X-rays: background intensity

Low-Z sample
(Ca-Fe poor)
Low background

High-Z sample
(Ca-Fe rich)
High background

Increases with sample atomic number
Wavelength Dispersive Spectrometer (WDS)
Wavelength Dispersive Spectrometer (WDS)

Bragg’s Law:

\[n\lambda = 2d \sin \theta \]

- \(n \): order of diffraction
- \(\lambda \): wavelength of X-ray
- \(d \): lattice spacing in diffracting crystal
- \(\theta \): angle of incidence or diffraction

“L-value”:

\[L = n\lambda \frac{R}{d} \]

- \(\theta \): angle of incidence or diffraction
- \(L \): distance between sample and crystal
- \(R \): radius of focusing (Rowland) circle

\[\sin \theta = \frac{L}{2R} \]

\(\theta \): angle of incidence or diffraction

\(L \): distance between sample and crystal

\(R \): radius of focusing (Rowland) circle
Incidence or Diffraction angle

\[n\lambda_1 = 2d \sin \theta_1 \]

\[n\lambda_2 = 2d \sin \theta_2 \]

With a different incidence angle, a different wavelength is diffracted
(for the same order of diffraction, \(n \))
First and second order diffractions

If the incidence angle changes so that \(\sin \theta_2 = 2 \sin \theta_1 \), the 2\(^{nd}\) order diffraction of the same wavelength occurs

\((\text{path } ABC = 1\lambda; \text{ path } DEF = 2 \times ABC = 2\lambda)\)

In WDS: since \(L = 2R \sin \theta \), L-value for the second order diffraction is doubled; \(L_2 = 2L_1 \)
Example 1.

Si Kα

Energy, $E = 1.74$ keV

$$\lambda \text{ (nm)} = \frac{1.2398}{E \text{ (keV)}}$$

Wavelength, $\lambda = \frac{1.2398}{1.74} = 0.7125$ nm

$$L \text{ (mm)} = n \lambda \text{ (nm)} \frac{R \text{ (mm)}}{d \text{ (nm)}}$$

For $n = 1$, $R = 140$, and $d_{\text{TAP}} = 1.2879$,

$$L_{\text{TAP}} = 1 \times 0.7125 \times \frac{140}{1.2879} = 77.45 \text{ mm}$$

Example 2.

U Mα

Energy, $E = 3.17$ keV

$$\lambda \text{ (nm)} = \frac{1.2398}{E \text{ (keV)}}$$

Wavelength, $\lambda = \frac{1.2398}{3.17} = 0.3911$ nm

$$L \text{ (mm)} = n \lambda \text{ (nm)} \frac{R \text{ (mm)}}{d \text{ (nm)}}$$

For $n = 1$, $R = 140$, and $d_{\text{PET}} = 0.4371$,

$$L_{\text{PET}} = 1 \times 0.3911 \times \frac{140}{0.4371} = 125.27 \text{ mm}$$
WDS operation: changing the L-value

Changing the L-value from L_1 to L_2 changes the incidence angle from θ_1 to θ_2 so that a different wavelength λ_2 is diffracted.

Radius of focusing circle (R) remains constant

\[
\begin{align*}
n\lambda_1 &= 2d \sin \theta_1 \\
L_1 &= n\lambda_1 \cdot R/d \\
n\lambda_2 &= 2d \sin \theta_2 \\
L_2 &= n\lambda_2 \cdot R/d
\end{align*}
\]
Theoretical limits of spectrometer movement

For a spectrometer with $R = 140$ mm, $L = 2R \sin \theta$

Theoretical limits:
$2R \geq L \geq 0$ at $90^\circ \geq \theta \geq 0^\circ$

280 mm $\geq L \geq 0$ mm

$L = 280$ mm $\theta = 90^\circ$
$L = 210$ mm $\theta = 48.6^\circ$
$L = 140$ mm $\theta = 30^\circ$
$L = 70$ mm $\theta = 14.5^\circ$
$L = 0$ mm $\theta = 0^\circ$

Note θ changes faster between 280-140 mm than between 140-0 mm
Spectrometer movement

Theoretical limits

sample
Actual limits of spectrometer movement

For a spectrometer with $R = 140$ mm,

Actual limits: 60 mm $\leq L \leq 260$ mm; $12.4^\circ \leq \theta \leq 68.2^\circ$

Typically, 72.5 mm $\leq L \leq 229.5$ mm; $15^\circ \leq \theta \leq 55^\circ$

Recall $\sin \theta = \frac{L}{2R}$, so $L = 2R \sin \theta$ and $\theta = \sin^{-1}\left(\frac{L}{2R}\right)$
2d of x-ray diffractors

For \(n=1, \theta = 15 \) to \(55^\circ \) (\(L = 73 \) to 230 mm), and \(R = 140 \) mm, a crystal can diffract \(\sim 0.52d < \lambda < 1.64d \)

[recall, \(L = n\lambda \frac{R}{d} \), i.e., \(\lambda = \frac{L}{nRd} \)]

Crystal lattices

<table>
<thead>
<tr>
<th></th>
<th>2d (nm)</th>
<th>6</th>
<th>14</th>
<th>22</th>
<th>30</th>
<th>38</th>
<th>46</th>
<th>54</th>
<th>62</th>
<th>70</th>
<th>78</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP</td>
<td>2.576</td>
<td>2.26</td>
<td>0.62</td>
<td>2.16</td>
<td>0.57</td>
<td>2.33</td>
<td>0.58</td>
<td>6.38</td>
<td>63.0</td>
<td>L (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPH</td>
<td>2.576</td>
<td>256.6</td>
<td>67.4</td>
<td>234.8</td>
<td>62.0</td>
<td>253.3</td>
<td>63.0</td>
<td>L (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>0.8742</td>
<td>13Al</td>
<td>24Cr</td>
<td>36Kr</td>
<td>66Tb</td>
<td>70Yb</td>
<td>L (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETH</td>
<td>0.8742</td>
<td>13Al</td>
<td>24Cr</td>
<td>36Kr</td>
<td>66Tb</td>
<td>70Yb</td>
<td>L (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIF</td>
<td>0.4027</td>
<td>19K</td>
<td>27Rb</td>
<td>48Cd</td>
<td>79Au</td>
<td>L (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFH</td>
<td>0.4027</td>
<td>20Ca</td>
<td>31Ga</td>
<td>50Sn</td>
<td>79Au</td>
<td>L (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Layered structures

* \(\lambda_{BeK\alpha} = 11.27 \) nm; so BeK\(\alpha \) can be diffracted only by diffractors with \(2d > 11.27 \) nm
 * e.g., with LDE3H (at \(L = 157.8 \) mm), and LDEB and LDEBH (at \(L = 217.6 \) mm)
Spectral resolution

![Diagram showing the concept of Full-Width Half-Maximum (FWHM)]
Curved diffracting crystals

Peak resolution with fully focusing Johansson-type crystal: FWHM ~10 eV

Some defocusing in Johan-type, but resolution is not compromised
X-ray focusing ellipsoid
WDS vs. EDS spectral resolution

Peak resolution with WDS (FWHM ~10 eV) is an order of magnitude better than with EDS (FWHM ~150 eV)
WDS detector: Proportional counter

Flow counter:
- P-10 gas (90% Argon + 10% methane quenching agent)
- Polypropylene window

Sealed counter:
- Xenon gas
- Beryllium window

- Incoming x-ray ionizes a gas atom that sets up a chain of ionizations in the gas. The signal is thus amplified by the gas itself.
- Pulse voltage generated is proportional to the voltage in the collection wire under normal operating wire conditions.

Tungsten collection wire at 1-3 kV voltage
Normal operation: 1600-1850 V
Signal amplification

Typical voltage range in the proportional counter region for a W wire: 1600-1850 V

The amplification factor is proportional to the voltage in the collection wire in the proportional counter region.
Quantum efficiency of counter gas

- **Argon:** long wavelength (low energy) detection

- **Xenon:** short wavelength (high energy) detection

Highest when the incoming X-ray is least absorbed by the gas.

Decreases when the X-ray is absorbed by ionizing an inner shell of the gas atom, generating ArKα or XeLα.

Lowest when $E_{X\text{-ray}}$ is slightly higher than the $E_c(Ar\text{-K-shell})$ or $E_c(Xe\text{-L-shell})$ absorption edges.

- **Argon:** long wavelength (low energy) detection
- **Xenon:** short wavelength (high energy) detection
Proportional counter setup: Pulse Height Analysis

A Single Channel Analyzer (SCA) can be set to allow only x-ray voltage pulses within ΔE to pass through.

ΔE is determined by Pulse Height Analysis (PHA) through an SCA scan.

Baseline and window voltages (ΔE) are set to filter out noise and unwanted signal.

An SCA scan shows the variation in count rate as a small voltage window (ΔE) is moved across the voltage range.

Proportional counter output:
Voltage pulses from noise and x-ray signal.
Pulse voltage in SCA scan

Energy of $\text{SiK}\alpha$ (1.739 keV) is ~ 1.39 times the energy of $\text{MgK}\alpha$ (1.253 keV).
If the pulse for $\text{MgK}\alpha$ is at 4 V, the pulse for $\text{SiK}\alpha$ will be at $4 \times 1.39 = 5.56$ V.

Pulse voltage is proportional to energy of the X-ray being detected.
Escape peak in SCA scan

Escape peaks fluoresced by incoming X-ray:
- P-10 counter: ArKα
- Xenon counter: XeLα

If the pulse for NiKα (7.47 keV) is at 5.20 V,
the XeLα (4.11 keV) escape peak will be at $5.2 \times \left[\frac{(7.47 - 4.11)}{7.47} \right] = 2.34$ V
Proportional counter window material

- Mylar has lower transmittance than polypropylene, especially for light element x-rays.
- Thin windows are better for light elements.
 - 1 μm thick polypropylene window transmits ~60% of the F Kα.
 - 6 μm thick polypropylene window transmits only ~5% of the F Kα.
Detector slit

- Positioned in front of the proportional counter window
- Cuts off stray x-rays and electrons

<table>
<thead>
<tr>
<th>Open:</th>
<th>LDE</th>
<th>P-10 flow counter</th>
<th>Very light elements (very low E, very long λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550-300 μm:</td>
<td>PET or LIF</td>
<td>Xe sealed counter</td>
<td>Heavy elements (high E, short λ)</td>
</tr>
<tr>
<td>300 μm:</td>
<td>TAP</td>
<td>P-10 flow counter</td>
<td>Light elements (low E, long λ)</td>
</tr>
<tr>
<td>300 μm with Mylar film:</td>
<td>PET or LIF</td>
<td>P-10 flow counter</td>
<td>Heavy elements (high E, short λ)</td>
</tr>
</tbody>
</table>
Semi-quantitative analysis
Compositional imaging with X-rays: elemental mapping

• **Beam-rastered image:**

 electron beam rasters over the area to be imaged

• **Stage-rastered image:**

 electron beam is stationary, stage moves
Zn-Sn composite

Background image

Zn-rich phase (low Z)

Sn-rich phase (high Z)

Zn x-ray image

Sn x-ray image

S x-ray image
X-ray defocusing in beam-rastered image
Image quality of x-ray maps

Two factors:

- **Image resolution:** number of points measured within the imaged area

- **X-ray Signal:** beam current and counting (dwell) time per point
Simultaneous mapping with different signals

Combined BSE, WDS and EDS X-ray mapping

Combined BSE, CL and X-ray mapping