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1 Introduction

As per [9], the United States Transportation sector consumed 28.5% of the
total 101.5 quadrillion BTUs of energy consumed in the US in 2007. This
fraction has been consistently rising at more than 1% over the last couple of
decades. It is also true that the United States on-road transportation energy
use is dominated by Passenger Cars, as shown in the figure 1 [1]. The total
energy used by on-road transportation (by cars, trucks, motorcycles and
buses) in 2007 is 22,393 trillion BTUs.

Figure 1: Transportation Energy Use break-up for different vehicle cate-
gories [1].

On a per vehicle basis, heavy-duty trucks consume the most energy due
to their extensive driving cycles and low fuel economy. [9] reports that heavy
trucks consumed on an average consumed over 23,000 BTUs per vehicle in
2006, while passenger cars and light-trucks consumed approximately 5,500
and 6,900 BTUs respectively. As a result, the need to reduce transporta-
tion energy consumption, especially by passenger cars and heavy trucks
is very apparent. To do so it is important to understand the character-
istics of the vehicle population on-road as well as of the new ones pur-
chased every year. The Bureau of Transportation Statistics [10] estimates
the average new vehicle (passenger cars and light trucks) sales in 2008 to
be 10,933 while used vehicle sales to be 36,530. The same for 2007 were
12,631 and 41,418 respectively. This shows the prevailing presence of cus-
tomers interested in choosing used vehicles and their components over new
ones. Though this characteristic does not completely represent the vehicle
population, it seems to be highly prevalent and thus demands investigation.
This report thus undertakes the task to evaluate the energy saving poten-
tial of reusing/remanufacturing the largest-energy-consuming component of
a vehicle - its engine. When these engines reach their end of life, they can
either be land-filled or they can be recycled which would conserve only the

1



original materials, or they can be remanufactured and resold in a like-new
workable condition which would not only conserve the materials but also
the value-added during the manufacturing processes, like casting, molding,
machining etc. Intuitively, remanufacturing seems to be the most viable
option. Remanufacturing of automobiles engines has been practiced since
1920s. As per the PERA (The Production Engine Remanufacturers Asso-
ciation), engine remanufacturing in the U.S. alone is a $2.5 billion industry
with approximately 2.4m engines remanufactured every year [2].

In this report we would like to focus on remanufacturing of passenger
car gasoline engines and heavy duty combination truck diesel engines and
calculate their benefits with reference to energy savings. Along with energy,
economic assessments are also presented for comparison.

2 Gasoline Engines for Passenger Cars

2.1 Introduction

The gasoline engine considered in this analysis is from the report by Keoleian
et. al [2]. It is a 3.5L internal combustion gasoline 60◦V-6 engine with a 5.2L
engine oil capacity. For the analysis let us consider a base year, which is
assumed to be 1987 for this report. This means that the consumer considered
is the owner of a car originally manufactured in 1987. This consumer on an
average drives the car for 120,000 miles, which adds up to 1999 [5], and then
has the following choices shown in Figure 2

In reality, the consumer has another option of buying a second-hand car
of a range of years as well. Since this range (of the age of second-hand cars)
is fairly large, and the fraction of them containing remanufactured engines
is also unknown, this option is not considered in our analysis.

In the above figure (Figure 2) Option 1 refers to extending the life of the
original car/engine system of 1987 by remanufacturing the engine. For being
in favor of remanufacturing, this engine is assumed to be like-new, that is,
it is as good as it was when it was brand-new. Option 2 involves keeping
the same car but replacing the engine with a new state of the art engine
of 1999, assuming that the new engine is compatible with the existing car
system. Option 3, another very popular option, is of abandoning the existing
car/engine system of 1987 altogether, and purchasing a new passenger car
of 1999. Note that the engine in Option 2 and 3 are the same but the energy
consumed by them will be different. This is explained in detail later.

With respect to the engines being studies, there are 2 kinds:

• An engine originally manufactured in 1987 and remanufactured and
put back into use in 1999. Lets just call this ”Remanufactured Engine”
for simplicity.
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Figure 2: The average decision choices for a consumer who has used his car
(bought in 1987) for 120,000 miles and now in 1999 is considering changing
the vehicle or remanufacturing its components.

• An engine newly manufactured in 1999 and put into use instantly. Lets
just call this ”New Engine.”

2.2 Life Cycle Inventory

2.2.1 Raw Materials Production

New Engine - The energy used to produce the raw materials, which are
required to manufacture the above described gasoline engine, was derived
from the following bill of materials (figure 3)[2].

It can be seen, that the major contributors are expectedly steel, iron and
aluminum. The total weight of the engine is ∼150Kg. The data for specific
energy has been taken from the report by Keoleian et al [2] and compared
with data from Smil [11].

Remanufactured Engine - Though remanufacturing involves bringing
back the used components to a like-new condition, sometimes components
are damaged beyond repair and have to be replaced with new ones. Along
with this, other materials used in cleaning, refurbishing etc comprise of
the raw material inputs that go into remanufacturing an engine. From [2],
the energy consumed in the production of raw materials that are used to
remanufacture a gasoline engine is ∼1.386GJ.

3



Figure 3: Bill of Materials for Gasoline Internal Combustion Engine [2].
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2.2.2 Manufacturing

New Engine - The energy consumed during manufacturing of the engine,
which is exclusive of raw material production is 4.374 GJ [2].

Remanufactured Engine - The manufacturing, rather remanufacturing
stage, primarily entails disassembly, cleaning, checking for defects, repair-
ing/refurbishing, replacing (if need be), re-assembling and testing. These
steps all require energy which is taken to be ∼1.409 GJ from [2].

2.2.3 Use Phase

The energy consumed while the engine is in use is dependent on a number of
factors like the total time of use, the fuel consumption rate, the percentage
of fuel energy consumed by the engine itself etc. The fuel economy data
available [12] is only for new cars with new engines or for average on-road
vehicles. However if you mix and match cars and engines (like in the case
of Option 2), the fuel economy is likely to change since different cars have
different aerodynamic drag, different transmissions etc. Explicit data for
the fuel economy in such cases is not available. Remanufactured engines
can often be deployed into various car systems (as long as the car and the
remanufactured engine are compatible), thus making it difficult to estimate
the resulting fuel economy. While the same engine when installed in different
cars can result in different fuel economies, it is true that the energy consumed
per unit fuel input by the engine itself would be fixed. In other words, the
efficiency of the engine (our system) remains fixed irrespective of which car
the engine is deployed into (which is outside the system).

Remanufactured Engine, Option 1 - Let us first analyze the homoge-
neous system of Option 1 (car and engine of the same year, 1987, allowing us
to use the available fuel economy literature data). To calculate the energy
consumed by the engine of 1987 (base year), we will calculate the fraction
of total energy utilized by a car and engine of 1987, that corresponds to the
engine alone. Note that the MPG of a car is for the car as the system and
not the engine alone.

The life of a passenger car vehicle was referred from [2] and considered to
be 120,000 miles, as described before. The fuel economy (mpg, fuel consump-
tion rate) of a new car of 1987 was taken from [12] since the remanufactured
engine is expected to perform like new. The specific energy of Gasoline Fuel
was taken from [9]. These statistics can be used to calculate the energy
used by the entire vehicle during it total use, since the fuel economy is the
performance metric of the entire vehicle. However, what is needed is the
energy used by the vehicle engine alone. The contribution of fuel that goes
or is consumed by the engine, was adopted from [3, 4], and was taken to
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be 80%. The distribution of fuel energy in a passenger car is shown in the
figure 4.

Figure 4: Fuel Energy Distribution in a Passenger Car [3, 4].

The thermodynamic efficiency of a gasoline engine (typically 38%) and
engine frictions are used to calculate the engine contribution to the use
phase energy of a vehicle (80% of the total fuel energy). In other words, the
efficiency of this engine is roughly 20%.

It should be noted that the fraction of total energy consumed by the
vehicle that can be attributed to the engine alone is called the Contribution
Factor of the engine. With technological advances in drive-train efficiencies,
vehicle aerodynamics, tire friction, this Contribution Factor is expected to
vary in time. Since no data was found which indicated these changes, the
80% [3] statistic, that originally comes from a reference published in 1994,
was assumed to be valid for a new average passenger car manufactured in
this study’s base year, 1987.

Using the above statistics and approximations, the use phase energy for
a new average engine for passenger cars in 1987 was estimated to be 443,149
MJ. A better understanding for the calculations in shown in the table below
in Figure 5

Thus an engine manufactured in 1987, on an average consumes 443 GJ
of absolute energy during the 120,000 mi of driving. Since we assume like-
new condition for the remanufactured engine and since the car remains the
same, this is also the energy consumed by the remanufactured engine or
with Option 1.

New Engine, Option 2 - The Option 2 considers continuing with the
same car of 1987, after replacing the installed engine with a new state-of-
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Figure 5: Engine Use phase calculation for a new engine of 1987.

the-art engine of 1999. As mentioned before that the fuel economy for such
a vehicle is not available. However we do know, from Lutsey et al [13], about
the change in fuel economy for the vehicle caused by replacing an engine of
one particular model year with an engine of another model year, keeping
everything else the same. So if we put a 1999 new engine into the old 1987
car from above, we know that the fuel economy will rise from 28.4 mpg to
29.161 mpg 2. Using this, the total energy consumed by the vehicle to travel
120,000 miles is 543,196 MJ. Also known from above is that everything
but the engine consumes 110,784.74 MJ of energy during the 120,000 mile
travel. Thus the energy consumed by the 1999 engine is simply the difference
between these two numbers which is 442,412 MJ.

New Engine, Option 3 - Option 3 considers the energy consumed by
a new engine of 1999 when installed in a new car of 1999. We know again
from [12] that the fuel economy of such a vehicle is 28.48 mpg. Thus the
total energy to travel 120,000 miles for such a vehicle is 556,121 MJ. Also
we know that the engine considered in this case is the same as the engine
considered in Option 2. That is, both the engines have the same efficiency.
So let us calculate the efficiency of the engine in Option 2.

Let η87 be the efficiency of the engine in 1987, which we know is 20%.
Similarly let η99 be the efficiency of the engine of 1999, considered in Options
1 and 2. Let ET,87in87 and ET,99in87 be the total energy consumed by the
vehicles in Option 2 and 3 respectively. Since the energy consumed by the
rest of the vehicle is the same (everything but the engine),

η87 × ET,87in87 = η99 × ET,99in87 (1)

2Lutsey et al give the change from 1987 to 2004 to be 0.6 mpg, and we just assume
this change to be linear, so that the change from 1987 to 1999 is 0.6*12/17. Also Lutsey
et al give this change for the entire drive train, and since the contribution factor for the
transmission is only 0.03, Figure [?], the change is assumed to be entirely for the engine
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Using this the efficiency of the New Engine of 1999 was calculated to be
20.395%. That is the newer engine is more efficient by 0.395%.

Using this and knowing that the total energy consumed by a new car of
1999 is 556,121 MJ (calculated above), the energy consumed by the engine
in Option 3 is 442,700 MJ, not very different from Option 3.

2.2.4 Transportation

Transportation has been estimated to be 3-5% of the Manufacturing and
Processing phases alone by ([2]). By including the use phase (which has
been show above to be severely dominating), the impact of transportation
would certainly be negligible. As a result transportation energy was not
included in the analysis.

2.3 Life Cycle Assessment

Combining all calculations and data above for a new and remanufactured
gasoline engines for a passenger car, the life cycle assessment can be charted
out in figure 6.

Figure 6: Life Cycle Assessment of a New (1999) and Remanufactured (1987)
Gasoline Engine.

The first point to grasp is the predominance of the use phase over the
life cycle of the products. The use phase of an engine consumes over 99%
of the life cycle of the remanufactured engine and over 97% for the new
engine, for both options (2 and 3). It can also be seen that the new engine
provides marginal savings in the use phase but at the same time consumes
more energy in both the raw materials and production phase. The similar
use phase of the new and remanufactured engines could be because the
CAFE standards did not change significantly between 1987 and 1999. This
is further diagnosed later. It is also worth noting that the above LCA

8



is based on a process-based model. A hybrid-model (using both process-
based and economic input-output models) which includes the building, office,
electricity, retail, motor, wholesale, truck transport, and rail transport etc.
will estimate a much higher energy requirement to manufacture gasoline
engines. For instance, authors of [14] estimate it to be close to 33,862 MJ,
which is considerably higher than the process-based-model-estimate used in
this study. Similar statistics for the remanufactured engines is 17,102 MJ,
which again is considerably higher than the process-based-model-estimate
used in this study.

2.4 Remanufacturing Energy Saving Potential

Remanufacturing energy saving potential refers to the relative savings ob-
tained by choosing to remanufacture over new. Remanufacturing is feasible
only if the energy consumed during its life is less than that for a new en-
gine. A remanufactured engine consumes lesser energy than a new engine
during the (re)manufacturing stage, but due to technological innovations,
a new engine may consume lesser energy in the use phase than a previous-
technology-based remanufactured one. Thus there is a trade-off which needs
to be analyzed. The break even point is when the savings of a remanufac-
tured engine, during the remanufacturing stage relative to the sum of the
manufacturing and raw material stages of a new engine, are exactly lost in
the extra energy used in the use phase of a remanufactured engine because
of being of a relatively out-dated technology.

However, realistically, remaufacturability of an engine or for that matter
any product can be deterred by two major factors:

(a) Obsolescence - which is the inferiority of the performance metric of
a remanufactured product relative to the current new one. Technological
changes cause new products to offer more, may it be in terms of energy
efficiency or capacity (volume, speed etc).

(b) Degree of Degradation - The goal of remanufacturing is to revive the
discarded product to a like-new condition. However, since the components
have already lived one entire life before being remanufactured, their perfor-
mance could be little inferior to what it was when it was manufactured for
the first time. Note, this degradation is expected to be little, since before
being sold, remanufactured products are expected to have passed all the
tests that a new products undertakes.

Let us first deal with obsolescence assuming the there is no performance
degradation in the remanufactured engine, in other words, an engine origi-
nally manufactured in 1987, and the same engine after being remanufactured
and used again starting 1999, have the same fuel economy (remanufacturing
resumes the engine to like-new condition).

Once the engine is remanufactured and resold, it competes with new en-
gines (in other words Option 2 vs 1 or Option 3 vs 1, as explained above),
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which may or may not be performing better. One way to gauge the perfor-
mance of an engine is to look at the average fuel economy of an on-road pas-
senger car and of a new passenger car (domestic and international)[5, 6, 12],
which has been graphed out below in Figure 7.

In 1975, after the 1973 oil embargo, the US government enforced the the
Corporate Average Fuel Economy (CAFE) standards (came into effect in
1979) under which all vehicles (new) with a gross weight less than 8,500 lbs
were to provide a fuel economy above a certain minimum standard set for
that year. The impact for this is evident in the graphs. The second graph
exhibits the reaction of this standard from new passenger car manufacturers.
For remanufacturing energy saving potential, what is important is the annual
change in the performance metric (figure 8).

Since, the CAFE standards came into effect in 1979, the bar chart shows
a evident spike in 1980, where the fuel economy of an average on-road vehicle
increased by ∼1.4 mpg. Though such changes do indicate the expected
improvements in engine efficiency, but they are not a direct indicator since
these improvements are the the comprehensive effects of improvements in
engine efficiency, rolling resistance, transmission efficiency, aerodynamics
etc. As a result, repeating the calculation conducted above between a 1999
new engine and a 1987 remanufactured engine, for a 1987 new engine and
a 1975 remanufactured engine (note this period contains the enforcement of
the CAFE standards) gives a better understanding for the remanufacturing
energy savings potential for the engine alone, and the trend exhibited. The
results are shown in Figure 9.

Clearly, improvements in engine efficiency have helped reduce the use
phase energy requirements by over 46% from 1975 to 1999, primarily because
of the enforced CAFE standards (since there is a greater change between
1975 and 1987 (compare first two columns) , when the CAFE standards were
enforced, than between 1987 and 1999 (compare the 3rd and 4th columns)).
Also note the striking difference between the energy consumed by placing
a 1987 Engine in a 1975 car and a 1987 engine in a 1987 car. Since the
engines are primarily the same, this hints of the improvements in efficiency
of the other components of the car as well, between 1975 and 1987. Lutsey
et al [13] support this result. Another interesting inference is that the 1999
engine consumes lesser energy in the 1987 car than in the 1999 car. This is
again supported by [13] which shows how the increase in the size of the car
has a big role in explaining this.

Using these calculations and the data available for manufacturing and
remanufacturing gasoline engines from Keoleian [2], the life cycle energy
comparisons between new and remanufactured engines was made (Figure
10).

Two years of comparison - 1987 and 1999 are shown.

1. 1987: The year of consideration is 1987
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(a) On-Road Vehicles

(b) New Vehicles

Figure 7: Fuel Economy Trend for Passenger Cars[5].
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Figure 8: Annual Fuel Economy change for on-road Passenger Cars[6].

Figure 9: Use phase energy consumption for engines of different generation
to travel 120,000 miles.
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Figure 10: Car Engine Remanufacturability Trend.
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• Option 1: A new engine of 1975 gets remanufactured and put
back into the old car of 1975

• Option 2: A new engine of 1987 is placed into the old car of 1975

• Option 3: A new car (with a new engine) is bought in 1987 and
used

2. 1999: The year of consideration is 1999

• Option 1: A new engine of 1987 gets remanufactured and put
back into the old car of 1987

• Option 2: A new engine of 1999 is placed into the old car of 1987

• Option 3: A new car (with a new engine) is bought in 1999 and
used

Since we are comparing a new engine with a remanufactured engine, for
each of the years of consideration we have two comparisons - Option 2 Vs 1
and Option 3 Vs 1. The data point labeled 1999, compared a new (Option
2 or 3) and remanufactured engine (Option 1) in 1999. The remanufactured
engine has lived through one life of 120,000 miles and date back to the
manufacturing date of 1987. Similarly the data point of 1987 compares a
new (Option 2 or 3) and remanufactured engine of 1987 (Option 1), where
the remanufactured engine was originally manufactured in 1975. Again, we
have not yet considered any degradation for the remanufactured engine and
assume it to be like it was when it was brand new.

The graphs shows that for the year of 1987 where the new engine per-
formed much better than the remanufactured engine from before the CAFE
standards, there are life cycle energy savings by choosing the new engine.
This means that the relative energy expenditure to manufacture the new
engine is easily overcome by the use phase energy savings of the new engine,
which is also evident in Figure 9. It is also clear that replacing the old engine
of 1975 with a new car of 1987 (Option 3) gives much larger savings (over
83%) than by only replacing the engine with a new engine of 1987 (Option
2), which gives savings of close to 19%. This is because of the substantial
improvements in the efficiency of other components of the car as well apart
from the engine. As a result there is lesser energy required by the other
components and thus lesser absolute losses by the engine.

For the year of 1999, the two engines (new and remanufactured) almost
perform equivalently over the life cycle making the comparison nuanced with
energy savings of close to around 1%. This, as explained before, could be
because the CAFE standards have not changes significantly between 1987
and 1999. [13] have shown that though the efficiency of the vehicle has
improved over these years as well, it has been diverted away from the fuel
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economy and utilized to provide different functions to the passenger like
improved air-conditioning, larger size etc.

The overall big conclusion from the analysis is that the savings in the
production phase by remanufacturing gasoline engines for passenger cars can
be overwhelmed by the relative energy expenditure in the use phase (since
gasoline engines have a dominating use phase over their life cycles) because
of technological obsolescence causing the new engines to be more efficient.
This has been analyzed for remanufacturing without any degradation (that
is assuming like-new) and any degradation could further favor the use of
new in such scenarios. Absence of efficiency improvements in the engine
will make the use phase between the new and remanufactured engine to be
equivalent and thus the savings in the production phase can create a net
savings for the remanufactured engine over the life cycle.

2.5 Economics (Answer to Why Car Engines are Remanu-
factured!)

Remanufacturability can be analyzed from either the environmental perspec-
tive or from the point of view of economics. The most economical option
is not always the most environmental friendly. The economic feasibility of
remanufacturing is well know and it is common for remanufactured products
to sell at 40-60% of the price of a new product [15]. Hence we first looked
into the environmental effects of remanufacturing passenger car gasoline en-
gines, by comparing the energy consumed during the entire life cycle of a
new and a remanufactured engine. We found that in earlier years of 1987,
remanufacturing was not the energy saving option and choosing new leads to
greater savings. For recent years like 1999, the analysis is nuanced. While
these estimations are assuming that the remanufactured engine performs
like-new and has negligible performance degradation compared to how it
was when it was brand-new, adding any kind of degradation will only further
promote the use of new engines over remanufactured one from the energy
savings perspective. However still, remanufacturing of automobile engines is
a popular activity and a number of independent manufacturers and OEMs
practice it. The reason for this can be understood by overlooking the envi-
ronmental calculations above and concentrating on the economics alone. As
per the survey conducted by Keoleian et al [2], a new gasoline engine costs
∼$5,700. On the other hand when buying a remanufactured engine, one can
either purchase it from the remanufacturer itself (∼$2,700) or from a dealer
(∼$4,000) [2], who adds his commission within the total price. Thus the
monetary savings for a customer can range from $1,700-$3,000. However,
this initial monetary saving is expected to be lost (at least partially) by the
extra gasoline consumed during the use phase of a remanufactured engine.

Until now we have assumed only obsolescence, but let us now also assume
that remanufacturing might fail to completely bring back the like-new con-
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dition and that the quality of a remanufactured engine is slightly degraded,
compared to what it was when it was first manufactured. Let us represent
this degradation in terms of the percentage lower fuel economy offered by
the remanufactured engine. This analysis is exhibited in Figure 11.

ss

Figure 11: Economic Analysis of Passenger Car Engine Remanufacturing.

Two prices of gasoline have been considered - $2.5 per gallon and $4
per gallon. The horizontal dashed lines are the savings in the two ways of
purchasing a remanufactured engine - from a dealer or from the remanufac-
turer itself. The total cost of extra gasoline consumed (over the use phase)
increases linearly with the relative degradation of a remanufactured engine.
It is inferred, that except for the case with a high price of gasoline and buy-
ing the remanufactured engine from the dealer, the allowable degradation
is more than 5%, which is quite unexpected with the critical testing and
advanced remanufacturing techniques used today. Thus remanufacturing
appears to be profitable to the customer from the economics point of view,
though it ends up being detrimental from an energy savings stand-point.

Another way to conduct economic analysis, is the way done in [2]. This
analysis is for the year of 1995, where the consumer has the choice to either
buy a new engine of 1995 or a remanufactured engine, originally manufac-
tured in 1983. The price of the new engine like above was $5,700, while for
the remanufactured engine was $3,350 (average price between purchasing
through a dealer or from a remanufacturer). The price of gasoline for the
subsequent 12 years was taken from [16]. Using these, the real life cycle en-
ergy cost of a new engine is $13,178, while for the remanufactured is $11,100,
calculated in 2000 dollars. Thus in terms of 2000 real dollars, purchasing
a remanufactured gasoline engine in stead of a new engine in 1995, lead to
a savings of approx. 16%. Thus again, economically, remanufacturing a
gasoline engine is favorable.

16



3 Diesel Engines for heavy duty combination trucks

3.1 Introduction

The engine chosen is from the report by Sutherland et al [17], which is
a six-cylinder, 15L diesel engine with the application of heavy-duty semi
tractor-trailers (class 8 combination trucks). The consumer choice in this
case is same as that shown in Figure 2 for gasoline engines. Once again let
us use the labels of ”Remanufactured Engines” and ”New Engines.”

3.1.1 Raw Material Production and Manufacturing

New Engine - The bill of materials for a conventional engine for a heavy
duty truck was used along with specific energies from [11] to estimate the
energy for materials production for a heavy duty engine to be 54,818 MJ. The
energy for the manufacturing phase was obtained from the Keoleian report
[2] and scaled up using the energy of the raw material processing. Though
the manufacturing energy could also be scaled up by weight, the composition
of the gasoline and diesel engines was found to be slightly different - The
gasoline engine has 45% Iron, 33% Steel and 20% Aluminum, while the diesel
engine comprises of 62% Iron, 31% Steel and 4% Aluminum. Thus scaling
by energy in the raw materials ((Energy to Manufacture Gasoline Engine)
* (Energy in the Raw Materials for the Diesel Engines) / (Energy in the
Raw Materials for the Gasoline Engine)) seems more appropriate. Doing
this gives the energy to manufacture the Diesel engine to be 31,855 MJ.
Thus the total energy embodied in the Diesel Engine, which includes raw
materials and manufacturing is 86,673 MJ.

Remanufactured Engine - The value of the embodied energy after
manufacturing, has been used from the report by Sutherland et al [17].
Their calculations reveal a savings of 16.25 GJ relative to a new engine
just prior to sale (embodied energy of a remanufactured engine is 1.85 GJ).
This estimate is again for the main components of the engine (engine block,
cylinder head, connecting rods, pistons and crank shaft), and not for the
complete engine. By using it, the analysis becomes slightly in favor of di-
recting remanufacturing to be more energy saving that using new.

3.1.2 Use Phase

New Engine - The estimated life time was referred from [18] and taken
to be 750,000 miles. The average mileage was taken to be 60,000 miles [8].
Thus the average life-time of a truck was also estimated to be ∼12 years.
Thus the years of consideration were again 1999, 1987 and 1975. [8] gives
the average fuel economy for combination trucks of these years to be 5.1,
5.7 and 5.4 mpg respectively. Clearly the changes in fuel economy have

17



not been that substantial. To calculate the use phase energy, the energy
intensity values (MJ/vehicle mile) for combination trucks was used [8]. The
year 1999 was again chosen for the production of a new engine. This data
enables the calculation of energy consumed during the life of a combination
truck. To calculate the fraction of this energy used by the engine [7] was
referred. The distribution of fuel energy use by different parts of the vehicle
is shown in Figure 12.

Figure 12: Fuel Energy Distribution in a Combination Truck[7].

Hence, ∼62% of the fuel energy is consumed by the engine (contribution
factor for the engine in heavy duty trucks is 62%). In the case of Heavy-Duty
Trucks (combination trucks as considered in this study), the fuel economy
has not exhibited any considerable change and after discussing with the Fed-
eral Highway Administration it was learnt that most of the fluctuation can
be attributed to the data gathering methodology [19]. This could primarily
be because there was no major regulation imposed for heavy duty trucks
like the CAFE standards for passenger cars. As a result the contribution
factor for engines in trucks has been assumed to be constant for the years of
consideration. In the case of passenger cars, the sharp improvements in the
fuel economy were intentional and thus researchers like Lutsey et al [13] had
diagnosed the factors that had helped improve the fuel economy. In the case
of combination trucks on the other hand there is no data that explains what
fraction of the fluctuations in the fuel economy can be attributed to changes
in engine efficiency, if any. As a result, unlike the case of passenger cars
there is not enough to estimate the fuel economy for truck having an engine
from another year. Hence, Option 2 could not be evaluated for trucks. This
means that we will consider only two options for the consumer:

• a remanufactured engine installed back into the old truck that has
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already been driven for 750,000 miles.

• a new engine in a new truck

Thus the use phase energy for the new engine of 1999 is simply 62%
of the total energy consumed by the old truck during the 750,000 miles of
driving. Using this and the above values (MJ/ vehicle mile values from [8]),
the use phase energy of a diesel engine of a combination truck is estimated
to be ∼ 12.612 TJ.

Remanufactured Engine - In the year of 1999, the remanufactured
engine, which would be one lifetime old would be from 1987. Since the
contribution factor is assumed to remain the same, the same calculation can
be done for the remanufactured engine (which is like-new) as well to estimate
the use phase energy of a remanufactured diesel engine of a combination
truck to be 11.97 MJ.

3.1.3 Transportation

Like in the case of gasoline engines, transportation energy is expected to
be negligible since its percentage contribution is expected to be similar for
diesel engines as it is for gasoline engine. Thus the transportation phase
energy is neglected from the analysis.

3.2 Life Cycle Analysis

Combining all calculations and data above for a new diesel engine for a
combination truck, the life cycle assessment can be charted out as shown in
Figure 13.

Clearly the use phase energy consumption dominates tremendously over
the prior stages, making the bar for ”raw materials + manufacturing” hardly
visible. Also it is interesting to note how a small difference of 0.3 mpg
between the two generations creates an enormous difference in the use phase.

3.3 Remanufacturing Energy Saving Potential

To assess the remanufacturability of truck engines, like in the passenger car
case, fuel consumption trends were derived [8]. The CAFE standards were
only imposed for light-duty vehicles with gross weight of ≤ 8,500 lbs. This
partially explains why the fuel economy of trucks has remains more or less
constant over the years. Another reason for this could be the monotonous
increase in the payload of trucks (not applicable to passenger cars) negating
the increase of engine capability to provide a better fuel economy. To check
for this the historical trend of the national average payload (in tons) of a class
8 combination truck obtained from the Federal Highway Administration [20]
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Figure 13: Life Cycle Assessment of a New (from 1999) and Remanufactured
(from 1987) Diesel Combination-Truck Engine.

has been plotted below. Figure 14 shows this along with the fuel economy
trend for combination trucks.

ss

Figure 14: Average Fuel Economy and Payload for a Combination-Truck[8].

Both the payload and average fuel economy for combination trucks have
roughly been the same over the past. The slight fluctuations in both are
attributed to the way data is recorded and procured by the Department
of Transportation [19]. Figure 15 better exhibits the changes in fuel econ-
omy over the years. The average absolute change is for the years under
consideration is only 0.18 mpg.

Using Figure 15 and 14, it is accepted that the performance in terms
of fuel economy for combination truck engines has remained more or less
the same over the past years. If anything, fuel economy of engines has
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Figure 15: Annual Fuel Economy change for on-road Combination Trucks.

slightly decreased partially due to the SOx and NOx regulations. Using this
data and making calculations similar to those for 1999, the remanufacturing
energy savings potential of truck-engines in 1987 was also estimated. In this
case the new engine was of 1987 while the remanufactured one was originally
manufactured in 1975. The results have been plotted in Figure 16.

Interestingly, the plot shows that combination-truck engines in 1987
should not be remanufactured, while those in 1999 should. In fact the re-
spective savings can be around 10% and 5.7% respectively. However, these
results are deceiving. The truth is that there has not been substantial change
in the fuel economy of heavy trucks and the fluctuations that exist are likely
to be because of the data gathering methodology. The key point to take is
that these fluctuation, even though small in magnitude (0.6 mpg between
1975 and 1987 and 0.4 mpg between 1987 and 1999), are large enough to
turn the conclusion significantly. This emphasizes the predominant impact
of the use phase and its high sensitivity to the fuel economy of combina-
tion trucks. Since small fluctuations are expected to exist between engine
to engine, it seems that the remanufacturing energy saving potential can
vary from unit to unit. Thus a case by case calculation is required to make
sure that the strategy chosen - new or remanufactured, is the energy saving
strategy. This poses a big question on the generally believed energy savings
ability of the Truck Engine remanufacturing industry.

4 Conclusion

Remanufacturing energy savings potential for both gasoline and well as
diesel engines has been evaluated. Policy intervention for gasoline engines
has caused gasoline engines to progressively provide better fuel economy over
the years. As a result new engines perform much better (in terms of energy
consumption) than remanufactured engines, giving use phase energy savings
far superior to the manufacturing energy savings of remanufactured engines.
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Figure 16: Truck Engine Remanufacturability.

22



Hence, choosing new engines was concluded to be the energy savings strat-
egy for the years around 1987 when the CAFE standard were progressively
becoming stricter. Over the past decade or more, the CAFE standards have
not changed and thus there has not been as significant an improvement in
engine technologies as in the 80s. Thus for the years around 1999, it was
estimated that the total life cycle energy consumption for the new and re-
manufactured engine was roughly similar. If new CAFE standards are to be
enforced in the near future, the scenario will again be like the 80s, and use
of the newer, more efficient engine is likely to be the energy saving strategy.

On the other hand diesel engines for combination trucks have not had
any standards imposed as a result of which the fuel economy for them has
roughly remained the same, historically. Thus the initial savings during
the manufacturing phase for a remanufactured engine relative to new, are
expected to be the net energy savings over the life cycle. Thus remanu-
facturing for diesel engines for combination trucks seems to be the viable
energy savings strategy. The fuel economy data used from the Department
of Transportation, by itself has some inherent fluctuations which have been
observed to impact the conclusions significantly. Overall, it was concluded
that even minor fluctuations (less than 1 mpg) in fuel economy are significant
enough to reverse conclusions. This is because of the dominance of the use
phase over the life cycle of the product. The use phase for the diesel engine
consumes close to 99.4% of the total life cycle energy. Such small variation
is expected to exist from driver to driver, and from one driving condition to
another, and especially from one engine unit to the other. Thus accurate
estimation of fuel economy is essential, on a case by case analysis, so as to
estimate the remanufacturing energy savings potential for diesel heavy duty
engines.

5 Assumptions

In the above analysis a number of assumptions were made, primarily due to
data unavailability. They are listed below:

• In reality, many reclaimed engines have lived a shorter life (e.g. from
abandoned cars or from car crashes where the engine survives) or even
longer (some from the 1950s, as informed by local engine remanu-
facturers), and since it is hard to know the average age of cores, a
remanufactured core is assumed to be 1 lifetime old, on an average.

• Energy to manufacture and remanufacture engines for the various
years considered could not be found, and thus the same manufacturing
and remanufacturing energy was used for all the years. Hence, man-
ufacturing and remanufacturing energies for the two types of engines
obtained from [2] and [17] were used for all years under consideration.
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At this point it should be understood that the manufacturing phase
has been shown to have a minimal impact on the total life cycle energy
consumption and thus the impact of this assumption is not expected
to be severe.

• The fuel economy of a vehicle for its entire life time has been taken to
be the average off all new vehicles of its class (passenger car/class 8
truck) and model year.

• It was assumed that the average fuel economy of a car does not dete-
riorate with use, and during the entire life the average fuel economy
of an engine is what it was to start with.

• The two primary reports for this study, [2, 17], base their analysis and
conclusions on a single engine each and not an average of multiple
engines, as ideally desired. This report does the same, again due to
lack of average data availability.

• The percentage contribution of the engine to the total fuel consumed
by a vehicle is assumed to be constant for all years under consideration
for the truck. This assumption has been justified in the text.

• For the case of Gasoline Engines, Lutsey et al give the change from
1987 to 2004 to be 0.6 mpg, and we just assume this change to be linear,
so that the change from 1987 to 1999 is 0.6*12/17. Also Lutsey et al
give this change for the entire drive train, and since the contribution
factor for the transmission is only 0.03, Figure 4, the change is assumed
to be entirely for the engine.

• An engine dissipates a fraction of its energy as heat, when it consumes
fuel. This fraction is taken to be constant in the above study. However,
[21] have indicated that this fraction could vary from 10 - 40 % de-
pending on the engine torque, RPM (revolutions per minute) etc. The
estimations used above (38% for gasoline engines and 42% for diesel
engines) are close to the upper limit indicated by them. This means
that the use phase energies estimated above are on the conservative
side and that the impact of use phase can be even more pronounced.

• Transportation has been estimated to be 3-5% of the Manufacturing
and Processing phases alone by ([2]). By including the use phase
(which has been show above to be severely dominating), the impact of
transportation would certainly be negligible. As a result transporta-
tion energy was not included in the analysis.
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