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Complex Contagion and the Weakness of Long Ties 

 

Abstract 

The strength of weak ties is that they tend to be long – they connect socially distant 

locations. Recent research on “small worlds” shows that remarkably few long ties are 

needed to give large and highly clustered populations the “degrees of separation” of a 

random network, in which information can rapidly diffuse. We test whether this effect of 

long ties generalizes from simple to complex contagions – those in which the credibility 

of information or the willingness to adopt an innovation requires independent 

confirmation from multiple sources. Using Watts and Strogatz’s original small world 

model, we demonstrate that long ties may not only fail to speed up complex contagions, 

they can even preclude diffusion entirely. Results suggest that the spread of collective 

actions, social movements, and risky innovations benefit not from ties that are long but 

from bridges that are wide enough to transmit strong social reinforcement. Balance 

theory shows how wide bridges might also form in evolving networks, but this turns out 

to have surprisingly little effect on the propagation of complex contagions. We find that 

hybrid contagions, which have high thresholds for some nodes and low-thresholds for 

others, can propagate on perturbed networks if the latter are sufficiently numerous. 

However, for purely complex contagions, propagation depends decisively on wide 

bridges, a characteristic feature of spatial networks. This may account in part for the 

widely observed tendency for social movements to diffuse spatially. 
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“All politics is local.”  

 – Rep. Tip O’Neil, former Speaker of the
 U.S. House of Representatives 

 

Pundits and activists have recently discovered the Internet as a medium with 

unprecedented opportunities for mass mobilization (Tilly 2004). The Internet is a scale 

free network (Barabasi and Jeong 2000) whose highly skewed degree distribution is ideal 

for very rapid diffusion of information. 

Despite this growing excitement, leading scholars of social movements have 

expressed doubts about using the Internet as a medium for mobilizing collective action.1 

Beginning with McAdam’s Freedom Summer, numerous case studies have shown that 

“spreading the word” alone is not sufficient to recruit new members to a social 

movement. Recruitment also requires having friends in the movement (McAdam and 

Paulsen 1993; McAdam and Rucht 1993)2 who do more than inform, they also persuade.  

The debate over the effectiveness of the Internet for social movement 

mobilization illustrates the important distinction between the acquisition of information 

and the decision to act on the information. Information, like disease, can be acquired 

passively from many sources of casual social contact. In contrast, the decision to act on 

the information (participate in a social movement or adopt an innovation), is an active 

choice, and in making that choice, people are influenced not only by the content of the 

information (such as the effectiveness of an innovation or social movement) but they are 

                                                 
1 For a parallel argument from the perspective of persuasive communication, see Wellman and Caroline 

(2002). 

2 McAdam’s (1988) study of recruitment to Freedom Summer also found that people were much more 

likely to join if they had multiple friends who were already members.  
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also influenced by the observation of prior adopters, especially those that they know. 

Examples are easy to find, whether the innovation is a belief, ideology, norm, technology, 

organizational form, fad, or fashion.3 People may hear about a movement to “think 

globally, act locally,” but it is when they see people they know getting involved that they 

become most susceptible to recruitment. Similarly, many people may hear about a new 

fashion, but it is not until they see their friends display it that they are persuaded to go 

along (Crane 1999). From hybrid corn (Ryan and Gross 1943) to medical innovations 

(Coleman, Katz and Menzel 1966), the pattern is well-documented. The decisive event is 

not hearing about an innovation, but observing enough people participating to be 

convinced that the innovation should be adopted (Coleman 1990; Simmel 1950; Rogers 

1995). 

The important distinction here is not between friends and strangers. The influence 

of friends is hardly surprising, given the strength of the ties that are sustained over time 

through commitment, trust, and emotional attachment. However a distinction which is 

less appreciated, but perhaps even more important, is between the structural features of 

social networks that promote the dissemination of information about an innovation or 

social movement and the network features that promote the spread of density-dependent 

decisions to act on the information. Our principal thesis is that network structures that 

are highly efficient for the rapid dissemination of information are often not conducive to 

                                                 
3 Decision-theoretic research on adoption of innovation includes studies of HIV prevention (Kelly et al. 

1997; Miller et al. 1998), birth control (Rogers and Kincaid 1981), religion (Chaves and Montgomery 

1996), and collective action (Chwe 1999; Kim and Bearman 1997; Marwell and Oliver 1993; Gould 

1995; Macy 1991). 
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the diffusion of collective action based on the information. In particular, we challenge the 

accepted wisdom that social diffusion benefits from ties that are long. 

Information, Disease, and the Strength of Weak Ties 

Friendships are strong ties. However, diffusion over social and information networks 

displays a striking regularity that Granovetter (1973) called “the strength of weak ties.” 

As Granovetter put it (1973: 1366), “whatever is to be diffused can reach a larger number 

of people, and traverse a greater social distance, when passed through weak ties rather 

than strong.”  

“Strong” and “weak” have a double meaning in Granovetter’s usage. One 

meaning is relational (at the dyadic level), the other is structural (at the population 

level). The relational meaning refers to the strength of the influence that is conveyed 

through the tie. Weak ties connect acquaintances who are relatively less invested in 

the relationship and less readily influenced by one another. Strong ties connect close 

friends or kin whose interactions are frequent, affectively charged, and highly salient 

to each other. Strong ties increase the trust we place in close informants, the 

exposure we incur from contagious intimates, and the influence of close friends. As 

Rogers (1995: 340) notes, “Certainly, the influence potential of network ties with an 

individual’s intimate friends is stronger than the opportunity for influence with an 

individual’s ‘weak ties’.”  

Granovetter introduces a second, structural, meaning. The structural strength 

of a tie refers to the ability of a tie to facilitate propagation by linking otherwise 

distant nodes in a social network. Granovetter’s insight is that ties that are weak in 

the relational sense – that the relations are less salient – are often strong in the 
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structural sense – that they provide shortcuts across the social topology. The strength 

of weak ties is that casual relations are more likely to be formed between socially 

distant actors with few network “neighbors” in common. Long ties greatly increase 

the rate at which information propagates, despite the weakness of the tie as a conduit.  

Conversely, strong social relations also have a structural weakness – 

transitivity. If Adam and Betty are close friends, and Betty and Charlie are close 

friends, then it is also likely that Adam and Charlie are close friends. Information in 

closed triads tends to be redundant, which inhibits diffusion. Adam, Betty, and 

Charlie may strongly influence one another, but if they all know the same things, 

their network will not help them learn about opportunities, developments, or new 

ideas that lie outside their closed circle. That is the weakness of their strong ties. 

Small Worlds 

Granovetter’s insight has become one of the most cited and influential contributions 

of sociology to the advancement of knowledge across many disciplines, from 

epidemiology to computer science. However, the full impact was not realized until 

recently, when Watts and Strogatz (1998) made an equally startling discovery. Not 

only do weak ties facilitate diffusion when they provide “shortcuts” between remote 

clusters, but it takes only a small fraction of these long ties to give even highly 

clustered networks the “degrees of separation” characteristic of a random network. 

This means that information and disease can spread very rapidly even in a “small 

world” composed mostly of tightly clustered provincial communities with strong 

ingroup ties, so long as a few of the ties are long. It takes only a few contagious 

people traveling between remote villages to make the entire population highly 
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vulnerable to catastrophic epidemics. It takes only one villager with a cousin in the 

city to bring news of job openings at a factory. Simply put, an added strength of 

weak but long ties is that it takes remarkably few of them to give even highly 

clustered networks a very low characteristic path length (the typical distance between 

any two nodes in the network).  

This principle is so clear and familiar that restating it may seem to beg 

banality. Nevertheless, we believe that the “weak ties” intuition can be misleading. 

The “strength of weak ties” applies to the spread of information and disease but not 

to many types of social diffusion which depend on influence from prior adopters, 

such as participation in collective action, the use of costly innovations, or 

compliance with emergent norms. For these contagions, we contend that long ties are 

not strong in either of Granovetter’s meanings, relational or structural.  

The implication of the relational meaning is immediately apparent. A low 

level of trust and familiarity between socially distant persons inhibits persuasion and 

imitation. What is not at all obvious is our contention that long ties have a structural 

weakness – they can also inhibit the diffusion of many social contagions.  

Simple and Complex Contagions 

Long ties clearly do not inhibit the spread of disease or information, even if contacts 

are less frequent or relations less trusted. However, many social contagions are not 

like disease or information. Information and disease are simple contagions, which 

means they can be spread by contact with a single source. Hence, a single tie is 

sufficient to allow an epidemic to leap over large social distances to a remote region 
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of the network. For simple contagions, the longer the ties – that is, the greater the 

social distance that they traverse – the faster the propagation. 

Using analytical and computational models, we show that this principle does 

not generalize to complex contagions. A contagion is complex if its transmission 

requires an individual to have contact with two or more sources of activation. The 

transmission of disease may take multiple exposures to an infected neighbor, but it 

does not require exposure to multiple infected neighbors.  

The distinction between multiple exposures and exposure to multiple sources 

is subtle and easily overlooked, but it turns out to be decisively important for 

understanding the weakness of long ties. It may take multiple exposures to pass on a 

contagion whose probability of transmission in a given contact is less than one. If the 

probability of transmission is P, the probability of contracting the disease after E 

exposures is 1-(1-P)E. Even for very small probabilities, for any P > 0 it remains 

possible to contract the contagion from a single encounter. Further, each contact with 

the same infected individual counts as an additional exposure.  

By contrast, for complex contagions to spread, multiple sources of activation 

are required since contact with a single active individual is not enough to trigger 

adoption. There are abundant examples of complex contagions. The credibility of an 

urban legend (Heath, Bell and Sternberg 2001), the costs of using new technologies 

(Coleman 1966), educational attainment (Berg 1970), the willingness to participate 

in a migration (MacDonald and MacDonald 1974), and incentives to exit formal 

gatherings (Granovetter 1978; Schelling 1978) all depend on how many of one’s 

contacts have already become participants. 
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Mechanisms of Complex Contagion 

There are at least four mechanisms that might explain why complex contagions require 

exposure to multiple sources of activation: strategic complementarity, credibility, 

legitimacy, and emotional exchange.  

1. Strategic complementarity. Simply knowing about an innovation is rarely sufficient 

for adoption (Gladwell 2000). Many innovations are costly, especially for early 

adopters but less so for those who wait. The same holds for participation in collective 

action. Studies of strikes (Klandermans 1988), revolutions (Gould 1996), and protests 

(Marwell and Oliver 1993) emphasize the positive externalities of each participant’s 

contribution. The costs and benefits for investing in public goods often depend on the 

number of prior contributors – the “critical mass” that makes additional efforts 

worthwhile.  

2. Credibility. Innovations often lack credibility until adopted by neighbors.4 For 

example, Coleman et al. (1966, 1983) found that doctors were reluctant to adopt 

medical innovations until they saw their colleagues using it. Markus (1987) found the 

same pattern for adoption of media technology. Similarly, the spread of rumors 

(Granovetter 1978), urban legends (Heath, Bell and Sternberg 2001), and folk 

knowledge generally depends upon multiple confirmations of the story before there is 

sufficient credibility to report it to others. Hearing the same story from different 

                                                 
4 This applies as well to the spread of information. Hearing about a job the first time is usually sufficient, 

but gossip may not be believed until confirmed by independent sources. Hence, the distinction between 

simple and complex contagions is not perfectly correlated with the distinction between information and 

innovation. Not all information is passively acquired and not all innovations are influenced by prior 

adopters.  
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people makes it seem less likely that surprising information is nothing more than the 

fanciful invention of the informant.  

3. Legitimacy. Knowing that a movement exists or that a collective action will take 

place is rarely sufficient to induce bystanders to join in. Having several close friends 

participate in an event often greatly increases an individual’s likelihood of also 

joining (Finkel Muller and Opp ����; Opp and Gern 1993), especially for high-risk 

social movements (McAdam and Paulsen 1993). Decisions about what clothing to 

wear, what hair style to adopt, or what body part to pierce are also highly dependent 

on legitimation (Grindereng 1967). Innovators risk being shunned as deviants until 

there is a critical mass of early adopters (Crane 1999; Watts 2002), and non-adopters 

are likely to challenge the legitimacy of the innovation.  

4. Emotional contagion. Most theoretical models of collective behavior – from action 

theory (Smelser 1963) to threshold models (Granovetter 1973) to cybernetics 

(McPhail 1991) – share the basic assumption that there are expressive and symbolic 

impulses in human behavior that can be communicated and amplified in spatially and 

socially concentrated gatherings (Collins 1993). The dynamics of cumulative 

interaction in emotional contagions has been demonstrated in events ranging from 

acts of cruelty (Collins 1974) to the formation of philosophical circles (Collins 

1998).5  

                                                 
5 For a series of empirical studies, see the special issue of Mobilization on “Emotions and Contentious 

Politics” (Aminzade and McAdam, eds., http://www.mobilization.sdsu.edu/volumes/Volume07.html#). 
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Complex Contagion: Contested and Uncontested 

These four mechanisms explain why many social contagions require exposure to multiple 

sources of activation. However, some of the examples used to illustrate these complex 

contagions also resemble the spread of information and disease, in that the contagions are 

uncontested. We define a contagion as uncontested if activation depends solely on the 

number of neighbors who are activated, without regard to the number who are not 

activated. For example, neighbors give us their germs but they do not give us their 

immunities, and uninformed neighbors do not prevent access to those who are. Neighbors 

also tell jokes that are much funnier when heard for the first time, and thus more likely to 

be spread if others are assumed not to also know it. It is the same with many complex 

contagions, such as the spread of urban legends and fashionable technologies (e.g., 

iPods). For uncontested contagions, it is the absolute number of others whose state is 

different from one’s own that triggers the decision to acquire that state, regardless of the 

number whose state is the same as one’s own. Thus, unlike the spread of information or 

disease, complex contagions require exposure to multiple sources, but as with these 

simple contagions, if complex contagions are uncontested, non-adopters do not 

discourage their neighbors from adopting. In contrast, contested contagions depend not 

only on having more than one activated neighbor, they also depend on the number who 

are not activated. Neighbors who have joined a demonstration or adopted a controversial 

innovation increase the pressure to follow suit, while skeptics, cynics, and opponents on 

the sidelines decrease it. We define a contagion as “contested” if non-activated neighbors 

exert countervailing influence. Hence, with contested contagions, the threshold of 

activation, τ, is based on the proportion of neighbors who are activated, not the number (0 
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� τi � 1). A node i with threshold τi = 0.5 can only be activated if half of i’s neighbors are 

activated. For uncontested contagions, the corresponding range is given by 0 � τi � z, 

where z is the number of i’s neighbors. (Note that τi indicates that thresholds vary across 

nodes, while the unindexed τ will be used to indicate that all nodes have identical 

thresholds.) 

Examples of contested contagions abound, including threshold effects in 

collective action with partial jointness of supply (Marwell and Oliver 1993), the 

legitimacy of emergent norms (Oberschall and Kim 1996), the efficacy of participation in 

social movements (Macy 1991), the credibility of social influence (Friedkin 2000; Latané 

Nowak and Luiu 1994), the pressure to conform (Asch 1956), the seduction of a riot 

(Granovetter 1978), the anxiety of witch hunts (Centola, Willer and Macy 2005), and the 

preference for voting (Katz and Lazarsfeld 1954). In all these examples, activation 

depends not only on the number who are active but also on the number who are not. 

By definition, all simple contagions are uncontested; if unactivated neighbors 

exert counterpressure, then as the number of neighbors increases, so too does the number 

of activated neighbors needed to trigger adoption. Figure 1 diagrams the distinctions 

between simple and complex contagions, and between complex contagions that are 

uncontested and contested. 

[Figure 1 about here] 

Effects of Group Size 

The distinction we propose between simple, uncontested, and contested contagions is 

intended as more than a descriptive typology. The distinction is also important 

theoretically. The possibility that all neighbors exert influence, not just those that are 
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activated, has an important implication for the effect of neighborhood size. Suppose a 

population is entirely unactivated except for a small number of randomly activated 

members. With uncontested contagions like disease or information, the more people one 

comes in contact with, the greater the chance of encountering an informed or infected 

individual. Thus, the larger the number of neighbors, the greater the chance of becoming 

activated. That is the case for both simple and complex contagions, so long as the latter 

are uncontested (that is, unactivated neighbors do not exert pressure against adoption). 

With contested contagions, it is quite the opposite. The more neighbors an actor 

has, the lower the susceptibility to activation (Watts 2002). Suppose everyone has four 

neighbors and a threshold of 0.5, which means that two activated neighbors are required 

to offset the counterpressure from two unactivated neighbors. If two activated members 

happen to be in the same neighborhood, the contagion will spread to a new neighborhood. 

Now suppose everyone has 24 neighbors. This increases the probability of contact with 

activated neighbors, but it also increases exposure to counterpressures from neighbors 

who remain unactivated. Thus, the number of activated neighbors needed for the 

contagion to spread increases from two to twelve. Twelve activated neighbors are needed 

because the influence from the converted neighbors is offset by the countervailing 

influence of the other twelve, something that would not happen in the spread of disease or 

information.  

This analysis also has implications for the effects of group size on participation in 

collective action. For public goods with pure jointness of supply (such as public 

broadcasting), free-riders do not reduce the incentive to contribute, since the cost to 

supply one person is the same as the cost to supply everyone (Marwell and Oliver 1993). 
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The larger the community that enjoys public broadcasting, the greater the chances of 

finding people who are willing to contribute unconditionally, no matter how many others 

might enjoy the public goods for free. 

 However, not all public goods have pure jointness. For example, the effort 

required to remove litter from a public beach increases with the number of people who 

use it. A lone volunteer might be willing to clean up the beach if only ten people used it, 

but if a thousand people used it, that same person might only volunteer if others did so as 

well. Participation of the volunteer requires additional volunteers as the number of non-

volunteers using the beach increases. Where contributions are encouraged by volunteers 

and discouraged by free-riders, collective action is likely to spread as a contested 

contagion, in which the incentive to contribute increases with the proportion of 

contributors, not the absolute number. 

An Analytical Model of Complex Contagions on a Ring Lattice 

Although the effects of group size are an interesting implication of complex 

contagions, our central purpose is to call attention to the implications for the effects 

of network structure, and in particular, to challenge the generalization of the “small 

world” principle from the spread of information and disease to many other types of 

social diffusion.  

The classic formalization of the “small world” intuition comes from Watts and 

Strogatz (1998). They demonstrate that the rate of propagation on a clustered network can 

be dramatically increased by randomly rewiring a few local network ties, making them 

into bridge ties that reduce the distance between arbitrarily chosen nodes in the network.  
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Most theoretical work on small world networks assumes simple contagions 

like information and disease that have thresholds of activation at the theoretical 

lower limit for propagation through social contact. There are good reasons to make 

this assumption. Simple contagions can be studied on random networks, which are 

highly amenable to analytic treatment (Erdos and Renyi 1959). In contrast, complex 

contagions cannot propagate on random networks (Morris 2000). Further, 

mathematical approximations can be made for simple contagions (Watts 2002), 

which cannot be used for those that require multiple sources of activation. The 

assumption that the global properties of complex contagions can be extrapolated 

from the properties of simple contagions is thus highly convenient.  

Unfortunately, it can also be highly misleading. When activation requires 

confirmation or reinforcement from multiple sources, the effect of bridges6 depends 

not only on their length (the path distance that is spanned) but also on their width 

(the multiplicity of short paths between otherwise non-adjacent nodes). The 

importance of bridge width has been overlooked in previous research because simple 

propagation requires only a single link between source and target. However, as 

McAdam and Paulsen point out, “[t]he fact that we are embedded in many 

relationships means than any major decision we are contemplating will likely be 

                                                 
6 Strictly speaking, a “bridge” is an edge whose removal disconnects a graph, while a “local bridge” of 

length l is a single tie between nodes whose distance would otherwise be at least l. We use the term 

“bridge” exclusively in the latter sense and therefore drop the modifier “local.” However, we also 

disallow the assumption that a bridge consists of a single tie. For simple contagions, a single tie (or 

edge) is sufficient to form an effective bridge. For minimally complex contagions, an effective bridge 

consists of three ties, and the number increases with the threshold of the contagion. Thus, we define a 

bridge as a set of short paths (l � 3) that reduce the distance for a contagion to propagate between non-

adjacent nodes, and the width wks of the bridge from s to k is defined as the number of these short paths. 
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mediated by a significant subset of those relationships” (McAdam and Paulsen, 

1993: 646). Research on complex contagions, such as the spread of participation in 

collective action and social movements, points to the need to consider what happens 

when thresholds are higher and activation requires exposure to more than one 

activated source. 

Figure 2 illustrates the importance of bridge width for complex contagions, using 

the same ring lattice with degree z = 4 that Watts and Strogatz (1998) used to demonstrate 

the small worlds effect. A ring lattice is a one-dimensional spatial network that allows the 

simplest analytical model of the effects of adding a very small number of long ties to an 

ordered graph. Following Watts and Strogatz, network density is held constant by 

removing existing ties from nodes that acquire random ties (indicated by dashed lines in 

Figure 2). We also follow previous authors (Watts and Strogatz 1998, Watts 1999, 

Newman 2000) in assuming that every node has equal influence and every tie has equal 

weight. These assumptions are necessary to identify the structural effects of long ties (vis-

à-vis the small world effect) without the confounding effects of influence heterogeneity 

across dyads.7 

The upper panel of Figure 2 illustrates the simple contagion assumed by Watts 

and Strogatz, in which all nodes have threshold τ  = 1, such that unactivated nodes 

(indicated by the clear circles) can be activated by contact with any member of a seed 
                                                 
7  The effect of long ties on the spread of complex contagions is sufficiently complicated and important 

that we have resisted the strong temptation to pursue what is clearly a fascinating question: how the 

small world effect may depend on the distribution of status, power, influence, and attraction. We eagerly 

anticipate the opportunity to build on the findings we report here as we relax these and other simplifying 

assumptions in the small world studies by Watts and Strogatz that provide the starting point for our 

research on the effects of allowing activation thresholds to rise above the theoretical lower limit for 

contagion. 
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neighborhood (indicated by the solid nodes). The seeds correspond to new arrivals who 

have already acquired the contagion, such as a disease. The lower panel is identical, 

except that τ = 2, the minimum number of activated neighbors required to propagate a 

complex contagion.  

[Figure 2 about here] 

The small worlds effect is evident in the upper panel, where s is the focal node of a seed 

neighborhood S in which all z neighbors of s are activated (solid nodes). Node i is the 

focal node of an unactivated neighborhood containing j and k (clear nodes). The ovals 

demarcate neighborhoods of the focal nodes and show the overlap between 

neighborhoods with z = 4. With thresholds that correspond to a simple contagion (τ = 1), 

adding a single random tie from s to i creates a shortcut across the ring that reduces the 

time required for a cascade to reach all the nodes. This effect is now so well documented 

for the ring lattice (Watts and Strogatz 1998; Watts 1999; Newman and Watts 1999; 

Newman 2000) that we do not elaborate further. 

Instead, we focus attention on the robustness of this result as thresholds increase 

above the very low levels assumed in previous studies. The lower panel of Figure 2 

shows how an increase in thresholds from τ = 1 to τ = 2 triples the width of the bridge 

required to carry the contagion, from one tie to three. The two random ties from S to i are 

sufficient to activate i, and the single tie from S to j is sufficient to activate j, given j’s tie 

to i. Once activated, i and j are sufficient to activate k, and so on. The width wks of the 

bridge from s to k is defined as the number of short paths (l � 3) between non-adjacent k 

and s, via i and j. In this example, wks = 3. For τ = 2, w = 3 is the minimum width of an 

effective bridge, one that is wide enough to propagate a complex contagion. 
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 It might appear that an increase from one to three in the number of random ties 

needed to bridge across the ring is rather trivial. It is not. For simple contagions, any 

random tie can form an effective bridge across the ring. For complex contagions, a 

random tie is useless unless it is part of a bridge with sufficient width, given the threshold 

levels. The higher the thresholds, the more ties that are required for an effective bridge. 

Even in the limiting case for complex contagion, where τ = 2, the probability that three 

random ties will connect two unactivated neighbors with two or more activated neighbors 

can be very small, depending on the size and density of the ring and the proportion of 

activated nodes. Thus, it is likely that many more than three random ties may be needed 

to effectively bridge the ring. 

 Even then, it might still appear that the problem is trivial. If random ties that are 

not part of an effective bridge have no effect on propagation, we can just keep adding 

random ties until an effective bridge is formed across the ring. 

 This turns out to be the decisive problem. Adding random ties disrupts the local 

propagation of complex contagions. For simple contagions, adding a random tie has no 

effect on local propagation. Note the deleted tie to i in the upper panel of Figure 2. This 

has no effect on the spread of the contagion in either direction from i. 

 In contrast, the local propagation of complex contagions depends on wide bridges, 

in precisely the same way that wide bridges are needed to span across the ring. The 

deleted tie to i in the lower panel of Figure 2 means that i’s neighbor to the left cannot be 

activated, blocking the contagion from spreading further in that direction. More 

generally, if network density is held constant by deleting existing ties from nodes that 

acquire random ties, every random tie that is not part of an effective bridge reduces the 
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width of a bridge between non-adjacent nodes. Alternatively, if no existing ties are 

deleted and density is allowed to increase as ties are randomly added, a contested 

contagion may still be blocked due to the increased exposure to unactivated neighbors.  

 We prove this using a series of theorems that derive the implications of a minimal 

increase in activation thresholds, from one activated source to two. Although many 

complex contagions have much higher thresholds, we make the conservative assumption 

that thresholds differ minimally from the simple contagions assumed in previous research 

on small worlds. We develop the proofs for the ring lattice used by Watts and Strogatz, 

with constant density and constant thresholds, and then extend the argument to less 

tractable networks using computational models.  

 The proofs depend on two assumptions, whether or not contagions are contested, 

and whether or not density is held constant as ties are randomly added. The proofs 

therefore address all four combinations of these binary conditions. For contested 

contagions, thresholds are the fraction of a node i’s neighbors that need to be activated in 

order for i to also become activated, with a range of 2/z � τ � 1. For uncontested 

contagions, thresholds are the corresponding absolute number, hence τ can range from 

2 � τ � z.  

 The argument involves two main theorems. Theorem 1 establishes the need for a 

very large number of random ties in order to create even a single effective bridge across 

the ring. Theorem 2 is the more important of the two. It proves that adding random ties 

erodes the ability of a ring lattice to propagate complex contagions. Both theorems 

assume uncontested contagions that are minimally complex (two, rather than one, 
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neighbor must be activated8). Both also assume density is held constant by removing 

existing ties as random ties are added. Each theorem has three corollaries that extend the 

argument to the other three combinations of scope conditions (contested contagions and 

increasing density). The proofs are appended. 

 

Theorem 1. For a ring lattice of size N, degree z � 4, and threshold τ = 2, holding 

network density constant and adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for an uncontested 

contagion approaches 0 for N >> z.  

 

Corollary 1.1. For a ring lattice of size N, degree z � 4, and threshold τ = 2/z, holding 

network density constant while adding the minimum number of random ties to bridge 

across the ring, the probability of creating an effective bridge for a contested contagion 

approaches 0 for N >> z. 

 

Corollary 1.2. For a ring lattice of size N, degree z � 4, and threshold τ = 2/z, allowing 

network density to increase while adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for a contested contagion 

approaches 0 for N >> z. 

 

                                                 
8 However, more than two neighbors must be activated if the number of unactivated neighbors were to 

increase through the addition of random ties, given the assumption that unactivated neighbors exert 

countervailing influence. For the case where contagions are uncontested, only two activated neighbors 

are needed, no matter how many random ties are created to unactivated neighbors. 
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Corollary 1.3. For a ring lattice of size N, degree z � 4, and threshold τ = 2, allowing 

network density to increase while adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for an uncontested 

contagion approaches 0 for N >> z. 

 

Theorem 2. For a ring lattice identical to that for Theorem 1 (including constant density 

and uncontested contagion), if random ties fail to create an effective bridge, each 

additional random tie reduces the number of nodes that a cascade can be expected to 

reach. 

 

Corollary 2.1. For a ring lattice identical to that for Theorem 1 except that network 

density increases as random ties are added, and if random ties fail to create an effective 

bridge, each additional random tie has no effect on the number of nodes that a cascade 

can be expected to reach. 

 

Corollary 2.2. For a ring lattice identical to that for Theorem 1 except that the contagion 

is contested, if random ties fail to create an effective bridge, each additional random tie 

reduces the number of nodes that a cascade can be expected to reach. 

 

Corollary 2.3 For a ring lattice identical to that for Theorem 1 except that network 

density increases as random ties are added and the contagion is contested, if random ties 

fail to create an effective bridge, each additional random tie reduces the number of nodes 

that a cascade can be expected to reach. 
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Beyond the Ring Lattice: A Computational Model 

For the ring lattice, the analytical results can be condensed to two main implications of 

the effect of random ties on the spread of complex contagions. Assuming that the number 

of random ties added to a ring lattice is the minimum for an effective bridge: 

1. The probability of creating an effective bridge between activated and unactivated 

nodes drops from 1.0 for simple contagions to near zero for contagions that are 

minimally complex, whether contagions are contested or uncontested, and 

whether or not density is held constant or allowed to increase as random ties are 

added. Creating an effective bridge across a ring lattice requires only a single tie 

for simple propagation. As thresholds increase, and effective bridges become 

wider, the expected number of ties that must be randomized in order to obtain the 

required configuration increases exponentially 

2. The number of nodes that a cascade can be expected to reach drops from N for 

simple contagions to a small fraction for contagions that are complex, except in 

the special case where contagions are uncontested and the addition of random ties 

leads to increased density rather than deleted ties. Otherwise, each random tie that 

is added reduces the capacity of the ring to support local propagation. 

 These results for a one-dimensional lattice do not necessarily generalize to higher 

dimensional structures, which provide detours around local ties that have been deleted. 

However, these structures lack the analytical simplicity of the ring lattice. For networks 

with more complicated geometries, we used computational models to extend the 

analytical results for the ring lattice. We began by replicating the small worlds 

experiments on the spread of simple contagions, using a two-dimensional lattice with 
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Moore neighborhoods (z = 8),9 instead of the ring-lattice used in earlier studies (Watts 

and Strogatz 1998; Watts 1999; Newman and Watts 1999). We then repeated the 

experiment, with only one change. We increased activation thresholds above the 

theoretical minimum for propagation through social contact. Propagation of complex 

contagions becomes ever more difficult as thresholds increase above the minimum for 

complex contagions (τi = 2), requiring even wider bridges. Thus, a very conservative test 

of the effect of network perturbation on complex contagions is to assume thresholds that 

are at the minimum for complex contagion. 

 As in previous studies (Newman 2000), we assumed that thresholds are 

deterministic (the probability of activation goes from zero to one as the threshold is 

crossed), and that once a node is activated, it does not revert to its former state.10 The 

parameter p (0 ≤ p ≤ 1) governs the proportion of ties that are rewired,11 where p = 0 

corresponds to a regular lattice and p = 1 corresponds to a random network. Between 0 

and 1, there is a critical region for p in which there is high local clustering with low 

characteristic path length, corresponding to a small world network. 

                                                 
9 Moore neighborhoods give each node eight neighbors on a two-dimensional grid, four on the rows and 

columns and four on the diagonals. Degree z can then be increased from 8 to 24 to 48 (and so on) by 

increasing the neighborhood radius r, where z = 4(r2+1). Qualitatively similar results are found for r = 1 

and r > 1.  

10 Stochastic thresholds do not change the results qualitatively so long as positive probabilities are 

constrained to thresholds within the range 1/z < τ  � 1, which is a scope condition for a theory of 

complex contagion. We leave the effects of reversible states to future research. 

11 Newman and Watts (1999) show that adding ties to a regular lattice is more robust than the rewiring 

method (Watts & Strogatz 1998; and Watts 1999) because it is eliminates the possibility of multiple 

components forming at high values of p. For the computational experiments below, we use the rewiring 

technique proposed by Maslov and Sneppen (2002), which allows each node to keep a constant degree 

for all values of p. 



 23 

Figure 3 illustrates the effects on the propagation dynamics of simple contagions 

of randomizing ties in a two-dimensional regular lattice with Moore neighborhoods. The 

abscissa represents the number of timesteps, while the ordinate shows the number of 

activated nodes. The dashed line shows the growth of a simple contagion on a regular 

lattice with no perturbation (p = 0), and the solid line indicates the growth of a simple 

contagion on a small world network in which p = 0.1. The growth of the activated 

population is much faster in the small world network, as would be expected from 

previous results (Newman 2000).  

 [Figure 3 about here] 

The ordinate on the inset shows the rate of propagation as the timesteps t required 

for the contagion to saturate the network (99% of the nodes), and the abscissa represents 

the order parameter p. As p increases, t decreases until it reaches the lower bound given 

by a random network at p≈ 0.1. Figure 3 confirms a key insight of the small world model 

– that propagation rates approach those of random networks while the network still has 

abundant local structure (Watts and Strogatz, 1998). 

We then replicated the small world experiment using the same model, only this 

time we raised thresholds just above those of the simple contagions used to demonstrate 

the small worlds effect. As before, we seeded the model with the minimum number of 

activated nodes to allow a contagion to spread. With simple contagions, only one seed is 

needed. With higher thresholds, more seeds are required. We therefore selected a single 

node as the focal node and then activated the neighbors of that node.  

Figure 4 shows the effect of random rewiring (p = 0.1, constant density) on the 

propagation of contested (dotted line) and uncontested (solid line) contagions. Figure 4 
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also reports the effect of adding random ties (p = 0.1, increasing density) on the 

propagation of contested (dark dotted line) and uncontested (dark line) contagions. As 

above, the growth of the contagion is indicated by the number of active nodes per 

timestep t. Compared to the regular lattice (solid line with circles), contested and 

uncontested contagions in the constant density model initially spread more slowly on a 

small world network than on a regular lattice. However, their accelerating growth curves 

cause these contagions to spread in slightly fewer overall timesteps in the randomized 

network than in the regular network.12  

The inset in Figure 4 shows the average propagation rate of complex contagions 

as the network is perturbed. As before, the rate of propagation is indicated by the average 

number of timesteps t required for the contagion to saturate the network. For both 

contagions, as p increases with constant density, t first decreases slightly and then 

reverses direction, increasing dramatically. For contested contagions with increasing 

density, both the growth of the activated population and the overall rate of propagation is 

slower in a small world network than in a regular network. By contrast, increasing the 

density of random ties only facilitates the propagation of uncontested contagions, 

consistent with Corollary 2.1. That is because adding ties to unactivated nodes reduces 

the proportion of ties to activated nodes, but has no effect on the number.13 

                                                 
12 When we increase the variance in the distribution of τ (while holding the mean constant at τ = 0.25), we 

find that the number timesteps required to saturate the network increases more dramatically as p 

increases from 0 to 1. This effect becomes even more pronounced as the mean of the distribution is 

increased above .25, at which point we no longer observe the slight increase in propagation rates around 

p = 0.1 (the level of randomization corresponding to a small worlds network).  

13 We therefore simplify subsequent figures by reporting only the effects of rewiring ties, holding density 

constant. 
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The steep increase in the number of timesteps required to complete successful 

cascades when p ≈ 0.1 is a sign of criticality for the propagation of complex contagions. 

This is confirmed in Figure 5, which measures the frequency of successful cascades as p 

increases from 0 to 1, for contested (dotted line) and uncontested (solid) contagions. In 

both cases, the effect of network perturbation is highly non-linear. We observe not a 

steady decline but a dramatic shift from almost complete success on each trial, to zero 

success.  

[Figures 4 and 5 about here] 

This abrupt change in global dynamics is indicative of a first-order phase 

transition in cascade behavior. A first order phase transition, such as the transition of 

water to steam, indicates a radical change in a system’s basic properties. In the case of 

boiling water, the shift in density at the phase transition is sudden and large, requiring 

complex analytic techniques to model the process (Landau and Lifshitz 1994). For 

complex contagions, the change is just as striking. This result identifies a critical point for 

ordered social networks, below which an increase in the number of random ties has 

almost no effect on the network’s ability to propagate complex contagions. However, 

once the fraction of random ties exceeds this critical point, these contagions can no 

longer propagate at all. In short, small changes to the network structure, which are 

imperceptible to individual actors (Watts and Strogatz 1998), can precipitate a radical 

shift in the collective dynamics of complex contagions. 

Figures 4 and 5 assume thresholds at the lower limit for complex contagions. The 

effects of network perturbation are even more dramatic as thresholds increase further, as 

shown in Figure 6, for conditions identical to those in Figures 4 and 5 except that τ = 3. 
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Higher thresholds preclude the initial increase in propagation rates for low but increasing 

values of p (evident in Figure 4). The effect of p is now monotonic, and the phase 

transition occurs much earlier, at around p = 0.03 instead of p = 0.1 (with τ = 2). 

[Figure 6 about here] 

To sum up, this first experiment demonstrates that long ties between remote social 

groups accelerate the spread of simple contagions, but can have the opposite effect on 

complex contagions, even with thresholds that are only slightly higher than those 

assumed in previous research on cascades in small worlds networks. Simple contagions 

can spread through a single tie while complex contagions cannot – they require wider 

bridges. The higher the thresholds, the wider the bridges need to be, and the more random 

ties that are required to create effective bridges. As more random ties are added, a phase 

transition eventually transforms the network from one that can sustain complex 

contagions to one that cannot.  

Yet this finding also poses a new puzzle: How is it possible that complex 

contagions are able to spread through real social networks? 

An intuitively plausible answer comes from the theory of structural balance 

(Cartwright & Harrary 1956). What if perturbing local ties causes the network to evolve 

non-randomly? Structural balance theory implies a tendency for social relations to be 

transitive, that is, if a node is a member of two dyads, it is more likely that the two dyads 

will form a closed triad. Thus, if a random tie forms between otherwise distant nodes i 

and r, the probability increases that another long tie will form between i and a neighbor 

of r. This second tie increases the width of the bridge between the neighborhoods of i and 

r. 
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To test the structural balance hypothesis, we developed an extension of the 

Newman and Watts (1999) small world model, in which random bridge ties are added to 

a two-dimensional lattice network (z = 8) instead of rewired from exiting ties. We adapted 

their model, using the parameter G >> 1 to limit the number of bridge ties that can be 

added to each node. Random ties must be added without replacement of existing ties, 

otherwise the disruption of local structure precludes structural balance. Since uncontested 

contagions are unproblematic when perturbation increases network density, we focus 

only on contested contagions. 

As in experiment 1, the parameter p (0 ≤ p ≤ 1) governs the probability of 

perturbing the network with a random tie, where 0 indicates that no ties are added and 1 

indicates that G random ties are added to each node. Thus, p = 0 corresponds to a regular 

network and p = 1 corresponds (approximately) to a random network with degree G 

(Newman 2000). As before, between 0 and 1, there is a critical region for p in which 

there is high local clustering with low characteristic path length, corresponding to a small 

world network. 

This model becomes a “targeted” random tie model by adding a parameter β  that 

biases the destination of the randomly added ties. Let i and r be a random pair who are 

not neighbors and who have no neighbors in common. Suppose a tie is randomly added 

between i and r. Now suppose i is randomly chosen to receive a second random tie. The 

target for i’s new tie will be chosen from among the neighbors of r with probability �. 

When β  = 0, the model corresponds to a standard small worlds model in which bridge 

ties are formed between randomly selected targets with probability p. When β  = 1, the 

first tie added to node i will be randomly targeted, but the next time i is randomly 
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selected to have an additional tie, the target will be selected from the same destination 

neighborhood14 as the first. Thus, increasing β  increases the width of the bridge between 

the two neighborhoods. We want to know if this will in turn allow the bridge to support 

complex contagions at higher activation thresholds.  

Figure 7 shows the effects of random and targeted perturbation with β  = 0 and 

β  = 1, for contested contagions with τ = 2/z (for comparability with the random 

perturbation assumed previously). As in Figure 5, increasing p with β  = 0 produces a 

phase transition in which cascade frequency (solid line) sharply drops to zero around 

p = 0.1. With β  = 1 (dotted line), as p increases, cascade frequencies drop, but instead of 

a first order phase transition, cascade frequencies maintain moderate levels (slightly 

higher than 50%).  

While this appears to be a promising result for targeted bridge ties, small 

reductions in β  have large effects on the success of cascades. For β  = 0.9 (dark dotted 

line), cascade frequency drops gradually to zero as p increases toward 1, and for β  = 0.8 

(dashed line), there is a steep transition to zero almost as abrupt as the transition for 

β  = 0. For lower values of β , there is no effect of targeted versus random bridge ties. 

Further tests with slightly higher thresholds (τ = 3/z) showed that even with β  = 1, 

targeting bridge ties has the same effect on cascade frequency as random ties.  

 [Figure 7] 

                                                 
14 This is a generous interpretation of structural balance theory. A literal interpretation requires that the 

second tie target any of r’s z neighbors, which could be a node that is distant from the nodes in r’s 

original neighborhood. Under this condition, targeted perturbation is even less effective in allowing 

propagation of complex contagions. 
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These results aver the robustness of the results obtained for the random 

perturbation model, even with thresholds at the minimum for complex contested 

contagion (τ = 2/z). Moreover, targeting has no effect if ties are rewired (with constant 

density) rather than added, for the obvious reason that as targeted ties attempt to create 

effective bridges, the rewiring process erodes the structure of the local neighborhoods. 

Further still, targeting has no effect if contagions are uncontested, since uncontested 

contagions are not disrupted by random perturbation (as shown in Figures 4 and 5). In 

sum, structural balance in tie formation can constrain perturbation so as to increase the 

width of bridges in complex networks, and this might seem like a plausible explanation 

for how complex contagions might propagate on perturbed lattices. Surprisingly, this 

turns out not to be the case. The results we observe for random perturbation are highly 

robust as we relax the assumption that network evolution is strictly random. 

Hybrid Contagions 

 This leaves open the question as to how complex contagions might nevertheless spread 

through social networks. An alternative explanation is suggested by Schelling (1978) and 

Granovetter (1978) – threshold effects. These occur when thresholds are distributed such 

that low threshold actors trigger those with higher thresholds, and so on. Following  

Watts (2002), we refer to these low threshold actors as “vulnerable nodes,” that is, nodes 

that are vulnerable to simple propagation. Watts (2002) showed that the size of the 

connected cluster of vulnerable nodes must be infinitely large in order for a global 

cascade to occur in an infinitely large and sparsely connected random network. However, 

for smaller networks (N = 2000) of the same density, even a moderate fraction of 

vulnerable nodes may be sufficient. Watts’s results suggest the possibility that a critical 
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mass of vulnerable nodes may trigger the activation of high-threshold nodes on complex 

networks.  

 The introduction of vulnerable nodes complicates the more elementary cases of 

simple and complex contagions. While thresholds are a property of nodes, simple and 

complex are properties of contagions, not nodes. Simple contagions never require 

confirmation from additional sources. For example, disease has a threshold of one for 

every member of the population (no one has to be infected by two or more carriers to 

become infected). Similarly, while complex contagions can involve distributed 

thresholds, they always require contact with two or more sources. For example, collective 

behaviors that begin with “milling around” indicate that no one is willing to act unless 

several others do so as well. Innovations that are useless without other adopters likewise 

require confirmation that more than one other person has adopted.  

 Some contagions, however, are “hybrid,” in that they can be either simple or 

complex, depending on an individual’s activation threshold. Members of a group with the 

strongest interest in the public goods may be willing to contribute even if no one else has, 

or if only one other has contributed, and so on. Hybrid contagions have the important 

property that a network can contain nodes that are vulnerable to simple contagion (as well 

as self-activating seed nodes that require no contact at all). If this proportion is 

sufficiently large to take advantage of random ties, it may become possible to propagate 

hybrid contagions to the remaining high-threshold members of the population even in a 

highly randomized network. Moreover, the rate of propagation may increase as the 

network is perturbed. 
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 We tested this hypothesis by introducing vulnerable nodes into the network used 

for experiment 1. Keeping τi = 2 as the maximum threshold in the population, we then 

varied the fraction of the population with vulnerable nodes (τi = 1), repeating the 

experiment for τi = 2/z. Adding vulnerable nodes allows us to evaluate the effect of p on 

the dynamics of hybrid contagions in the transitional region between simple and 

complex.  

[Figure 8 about here] 

Figure 8 shows the frequency of cascades for distributions of τi in which 5% 

(solid line), 10% (solid with circles), and 15% (dotted line) of the nodes are randomly 

replaced with vulnerable nodes.15 With 5% vulnerable nodes, the effect of p is slightly 

different from what we observe in Figure 5 – instead of a phase transition, there is a 

gradual crossover between cascade success and failure – yet the frequency of cascades 

still decays to zero as p increases. Increasing the fraction of vulnerable nodes to 0.1 

prevents the drop to zero, but frequencies still show a noticeable decline as p approaches 

1. With 15% vulnerable nodes, frequencies dip only slightly as p approaches 1. As the 

percentage of vulnerable nodes reaches 2/z (dashed line), they form a sufficient fraction 

of most neighborhoods to guarantee activation of their higher threshold neighbors, even 

in a network that is entirely random.16 

                                                 
15 The introduction of the vulnerable nodes increases the variance in the distribution of thresholds such that 

contagions are no longer complex. We obtained qualitatively similar results using Gaussian and uniform 

threshold distributions with enough variance to introduce a moderate fraction of nodes that could be 

activated by a single contact, and by increasing the proportion of nodes with threshold 0 (instead of 1). 

16 This result implies that in finite populations the effect of vulnerable nodes is dependent upon z. As 

neighborhood size increases, the fraction of vulnerable nodes needed to facilitate the propagation of high-

threshold contagions decreases. 
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The effects of vulnerable nodes on propagation rates are consistent with their 

effects on cascade frequencies. The inset in Figure 8 shows that there is a drop in the 

number of timesteps required to fully propagate hybrid contagions as p increases from 0 

to 0.1, regardless of the number of vulnerable nodes. With 5% and 10% vulnerable nodes, 

there is no phase transition, but the number of timesteps required to complete a cascade 

still increases as p approaches 1. For 15% vulnerable nodes, the number of timesteps 

required for propagation increases only slightly as p approaches 1. When 25% of the 

nodes are vulnerable, increasing p above 0.1 has the small world effect of approximating 

the rates on a random network. However, the rates only approach those for simple 

contagions if the proportion of vulnerable nodes is increased to 50%. And as the 

maximum threshold increases (e.g., from 2/z to 3/z), so too does the critical mass of 

vulnerable nodes required to trigger a successful cascade. 

Even with these caveats, the experiments with vulnerable nodes suggest how 

hybrid contagions can spread, even when a majority of nodes have high thresholds. 

Adding a relatively small fraction (15-20%) of nodes with very low thresholds (τi = 0 or 

τi = 1) allows the network to benefit from the addition of a relatively small number of 

random ties (e.g. p ≈ 0.1), and vice versa. Just as it takes very few random ties for simple 

contagions to propagate on a regular lattice about as easily as on a purely random graph, 

so too it takes only a few innovators (seed nodes) and early adopters (vulnerable nodes) 

for hybrid contagions to propagate on a perturbed lattice about as easily as would a 

simple contagion.  

A critical mass of low-threshold nodes explains how hybrid contagions can 

benefit from the perturbation of a lattice even when most nodes have high thresholds. 
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While most people will only adopt a new fashion or join a new cause after seeing several 

others do so, there are often a number of “innovators” and “early adopters” who can then 

provide the critical mass that allows a hybrid contagion to acquire the propagation 

dynamics characteristic of simple contagions. However, not all populations will contain 

this critical mass. Some innovations may be so risky to adopt, and some collective actions 

may be so costly to join, that few if any members are prepared to act alone or to act on 

first exposure.  

Discussion 

If targeted perturbation and vulnerable nodes do not explain the spread of complex 

contagions, the question remains: How do we account for the rapid diffusion of 

participation in costly collective actions or the adoption of risky innovations? The 

answer, we suggest, is spatial diffusion. 

 Rep. Tip O’Neil’s insight that “all politics is local” quickly became an aphorism 

because it resonated with experience in widely divergent political cultures, from ethnic 

enclaves to high tech boom towns. Our experiments with complex contagions suggest 

that politics is local not only because of the parochial attitudes of ethnic voters but also 

because political influence involves relatively high thresholds and therefore depends on 

the wide bridges that characterize spatial networks.  

The local influence principle applies not only to electoral politics but also to the 

mobilization of social movements. Beginning with McAdam’s (1988) seminal study of 

Freedom Summer, a consistent finding in social movement research is that recruitment is 

local. Participation in collective action and social movements seems to spread most 

effectively in populations that are spatially clustered.  
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A recent example is Hedstrom’s (1994) study of the early labor movement in 

Sweden, in which he shows that participation spread locally, from one residential 

neighborhood to another. Other studies have also found that social movements tend to 

spread along spatial contours. In China, the dormitory housing arrangements structured 

social ties in a way that allowed for easy diffusion of student dissent (Zhao 1998). 

Similarly, in France, the close quarters of inner city settlements promoted the emergence 

of violent revolts (Gould 1996). Further, Rogers and Kincaid (1984) show that the 

diffusion of birth control technology follows spatial patterns of adoption in Korean 

villages, and Whyte (1954) argues that the diffusion of product adoption in Philadelphia 

followed spatial residential patterns.  

An obvious explanation is the higher probability of propagation between nodes in 

close physical proximity. As Hedstrom suggests, “The ‘closer’ that two actors are to one 

another, the more likely they are to be aware of and to influence each other’s behavior” 

(Hedstrom 1994: 1163). Intuitive support for this claim draws from everyday experience: 

the spread of disease and fashion requires physical, respiratory, or visual contact. 

Empirical studies show that social movements tend to spread through contacts between 

existing participants and their close friends, many of whom are likely to be their 

neighbors as well.  

However, our study suggests an additional advantage of spatial networks that has 

not been previously noticed. Complex contagions favor spatial networks not only because 

the bridges between nodes are physically short – i.e., greater physical proximity – but 

also because the bridges are structurally wide. Spatial networks are characterized by 

overlapping neighborhoods – the ideal medium for the spread of complex contagions.  
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This structural advantage suggests a new explanation for the widely observed 

importance of friendship ties as the conduits of recruitment to social movements. The 

standard explanation is the relational strength of friendship ties. People are more easily 

influenced by their friends than by strangers or acquaintances. Our study identifies an 

additional mechanism that has nothing to do with the affective strength of the ties. The 

mechanism is entirely structural. While friendship networks tend to be highly clustered, 

they also tend to have substantial overlap between clusters (Hanneman 2005). These 

overlaps provide the wide bridges needed for complex contagions to propagate. 

This principle has a further implication for the spatial diffusion of social 

movements. While neighbors may be important for the spread of movement participation 

because they are likely to be friends, it may be the other way around as well: friends are 

important because they are likely to be neighbors. The spatial arrangement of 

neighborhoods in turn constrains friendship networks to acquire the overlapping clusters 

needed by complex contagions. 

Conclusion 

The strength of weak ties is that they tend to be long – they connect socially distant 

locations. Moreover, only a few long ties are needed to give large and highly clustered 

populations the “degrees of separation” of a random network, in which information and 

disease can rapidly diffuse. For simple contagions, like the spread of disease or 

information, a single link between otherwise remote nodes is like a worm hole in social 

space. 

It is tempting to regard this principle as a lawful regularity, in part because it 

justifies generalization from mathematically tractable random graphs to the clustered 
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networks that characterize social structures. Nevertheless, our research cautions against 

generalization. Many social contagions are not like disease or information. The decision 

to act on information is often based not only on the attributes of an innovation but also 

the observation of prior adopters. The credibility of information or the willingness to 

adopt a risky innovation often requires independent confirmation. Information about an 

innovation (including how many have already adopted) can be acquired from a single 

source, but the influence from prior adopters, including direct evidence of their adoption, 

frequently requires exposure to multiple sources of social reinforcement.  

For complex contagions, the relevant attribute of a bridge is not the length of a 

dyadic tie but the width of the bridge, measured by the number of short paths between 

non-neighbors. Using Watts and Strogatz’s original model of a small world network, we 

found that long ties not only fail to speed up complex contagions, they can even preclude 

diffusion entirely. Complex contagions benefit not from ties that are long and narrow but 

from bridges that are wide enough to transmit sufficient social reinforcement. 

This finding has profound implications for the strength of weak ties. As a regular 

lattice is perturbed through the addition of random ties, there are fewer common 

neighbors to provide multiple sources of confirmation or reinforcement. Thus, while 

networks with long narrow bridges are useful for spreading information about an 

innovation or social movement, they can be inefficient for the spread of the decision to 

act on that information if this decision depends on confirmation from multiple sources.   

How, then, might we account for the spread of high-threshold contagions? 

Balance theory explains how wide bridges might form through the perturbation of a 

regular lattice via the tendency for bridge ties to become triadically enclosed. Although 
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ties that are randomly added in a clustered network tend to be long, long ties are not 

always randomly formed. A chance acquaintance between individuals from different 

neighborhoods increases the chances that a second tie will form between one of these 

individuals and the neighbors of the other. This second tie increases the likelihood that 

yet more ties will form between these neighborhoods, and so on, until the bridge grows 

wide enough for a complex contagion to pass.  

The balance-theoretic social mechanism underlying this tie formation process 

indicates that a small random process (a chance acquaintance between individuals from 

different neighborhoods) can lead to the formation of a wide bridge between them. 

Intuitively, this would seem to suggest an explanation for the spread of complex 

contagions on social networks: tendencies toward structural balance widen the bridges 

formed by random ties. Surprisingly, this turns out not to be the explanation. The effects 

we observe for random perturbation are highly robust, even when network evolution is 

tightly constrained by the need for structural balance. 

An alternative explanation for the spread of high-threshold contagions in complex 

networks is a “threshold effect” caused by a critical mass of vulnerable nodes. The 

fraction turns out to be surprisingly small, a result that parallels the remarkable discovery 

made by Watts and Strogatz (1998). They showed that surprisingly few random ties are 

needed to make simple contagions propagate on highly clustered networks at close to the 

same rate as on random graphs. We found that comparably few vulnerable nodes are 

needed to make hybrid contagions propagate on complex networks (although the rates 

remain somewhat slower than for simple contagions). Vulnerable nodes show that what 

matters for cascades is not only the mean threshold but the distribution. Schelling (1978) 
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and Granovetter (1978) proved this for cascades in a fully connected population. We now 

see that this is true for embedded populations as well. As the mean threshold increases, 

the effects of perturbation on a clustered network depend decisively on a critical mass of 

innovators and early adopters. Above critical mass, the effect of random ties is similar to 

what we observe for simple contagions like information and disease. Below critical mass, 

the effect is the opposite. 

 The possibility for “threshold effects” does not mitigate the danger in taking 

disease and information as archetypes for social diffusion. For complex contagions, the 

intuitions generated by the small world model can be highly misleading. Higher 

thresholds fundamentally alter the effects of perturbation on clustered networks in ways 

that have gone unnoticed in the excitement generated by the discovery of the small world 

effect. Our findings clearly suggest the need for future studies of social diffusion to take 

into account the possibility that contagions may be complex, based on thresholds 

requiring exposure to more than a single activated neighbor. The qualitative differences 

we discovered between simple and complex contagions should caution network theorists 

about extrapolating from the spread of disease or information to the spread of 

participation in political, religious, or cultural movements. These movements may not 

benefit from “the strength of weak ties” and may even be hampered by processes of 

global integration that stretch social ties out much “longer” while making them “thinner.”  

Interestingly, these results may have important implications for the development 

of public health policies that aim to prevent the spread of infectious diseases. The 

channels along which disease can spread the quickest may well be similar to the channels 

along which preventative information can propagate the fastest. However, our study 
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suggests that these may not be the best pathways for effecting social change. Health 

reform, especially in cases where public health innovations contravene existing social 

norms, requires social reinforcement, not simply access to information (Friedman et al. 

1993, Latkin et al. 1995, Pulerwitz and Barker 2004). While word of mouth transmission 

of new ideas may travel as quickly as the spread of a disease, without the social 

reinforcement necessary to propagate behavioral norms, these ideas may have very little 

effect on risky behavior (CDC 1997, p. 3-2). Simply put, information may diffuse faster 

through the long ties found in small worlds, but the information may be less effective in 

changing resistant or inertial behaviors. 

This problem is particularly relevant for public health organizations that rely on 

peer networks to relay information about disease prevention. Our findings suggest that 

efforts to change behavioral norms through peer influence should target residential 

networks rather than more complex structures like friendship or employment networks. 

Residential neighborhoods have the overlapping clusters that are essential for 

transmitting social reinforcement.  

This applies as well to the spread of social movements. Our study suggests a 

mechanism that may explain why social movements seem to favor spatial diffusion. For 

complex contagions, it is not only the physical proximity of the nodes that is important, 

but also the width of the bridges. Spatial neighborhoods are not only clustered, but more 

importantly, they overlap. These overlapping nodes create wide bridges between 

neighborhoods. Spatial proximity – the shortness of the bridge – makes the connection 

relationally strong, but it is the width of the bridge – not its length – that makes the 

connection structurally strong. 
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Appendix 

Theorem 1. For a ring lattice of size N, degree z � 4, and threshold τ = 2, holding 

network density constant and adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for an uncontested 

contagion approaches 0 for N >> z.  

Proof 

 Let S be the set of z+1 nodes already activated in a ring lattice of size N and 

density z/(N-1), where every node has z ordered neighbors (not including neighbors that 

are randomly added), and z � τ. We assume that density is held constant by replacing 

regular (non-random) ties as random ties are added. We also assume that all nodes have 

threshold τ = 2, the minimum threshold for complex contagions, and that unactivated 

nodes do not exert countervailing influence, such that contagions are uncontested. Let A 

be the number of currently activated nodes. Let i be any unactivated node, none of whose 

neighbors are activated. 

 Given τ = 2, there must be two random ties to i from any two nodes in A (see 

Figure 2). Given activation of i, for a neighbor j of i to then become activated, there must 

be one random tie to j from any node in A. Given activation of both i and j, their shared 

neighbor k will have two activated neighbors and will also become activated, and so on. 

Hence, for τ = 2, the number of random ties R = 2+1 = 3. More generally, R = τ(τ+1)/2. 

 The probability that R = 3 ties form an effective bridge is given by the number of 

effective configurations divided by the total number of possible configurations. For any z, 

an effective configuration must include one node i which can be any of the N-A 

unactivated nodes. This node must have 2 ties to any 2 of the A activated nodes, giving 
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(N-A)A(A-1)/2 combinations. There must also be 1 tie from any activated node to any one 

of i’s z neighbors, or Az. The total number of effective combinations CE is then  

CE = (N-A)A(A-1)Az/2       [1.1] 

For the limiting case of a very large and sparse network with minimal activated nodes 

(N >> A = z+1) and z = 4,       [1.2] 

CE =̀ (N-5)(20)(20)/2 = 200N-1000      [1.3] 

 For convenience, we can assume that random ties can be formed between any pair 

of nodes, including those already connected. Thus, each of the three random ties can 

connect any of the N(N-1)/2 pairs of nodes, giving 

CP = (N(N-1)/2)3        [1.4] 

Assuming very large N, we can approximate  

CP ≈ N6/8         [1.5] 

 The probability P of an effective bridge between activated nodes and any two 

inactivated neighbors is then 

P = CE / CP         [1.6] 

P ≈ 8(200N-1000)/N6        [1.7] 

P ≈ (1600N-1000)/N6        [1.8] 

 Thus, P approaches zero under conditions in which a bridge across the ring will 

have maximum impact, that is, where N >> A = z+1 and z = 4. As the proportion of 

activated nodes increases, P increases but the need for an effective bridge declines. In the 

limiting condition where all nodes are activated except two, 

CE = 2N(N)Nz/2        [1.9] 

CE = 4N3         [1.10] 
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P = 32N3/N6         [1.11] 

P = 32/N3         [1.12] 

 Thus, where only the seed nodes are activated and bridges are most likely to 

speed up propagation, the probability that three random ties will form an effective bridge 

is very close to zero. As the contagion spreads along regular ties, and more nodes are 

activated, the probability increases, but the need for the bridge declines. Even when all 

but two nodes are activated, and a bridge will have no effect on propagation, the 

probability remains extremely small. The smaller the probability, the more random ties 

that will be needed to create at least one effective bridge. 

   

Corollary 1.1. For a ring lattice of size N, degree z � 4, and threshold τ = 2/z, holding 

network density constant while adding the minimum number of random ties to bridge 

across the ring, the probability of creating an effective bridge for a contested contagion 

approaches 0 for N >> z. 

Proof 

 The proof is identical to Theorem 1 except that τ = 2/z. Since density is held 

constant, it remains the case that R = 3. 

 

Corollary 1.2. For a ring lattice of size N, degree z � 4, and threshold τ = 2/z, allowing 

network density to increase while adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for a contested contagion 

approaches 0 for N >> z. 

Proof 
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 The proof is identical to Theorem 1, except that R > 3. That is because τ = 2/z and 

z remains constant, while the number of neighbors increases from z to z+1 if a random tie 

is added to a node. Let ri be the minimum number of random ties from A to i that must be 

created in order for i to be activated by ties to A. Node i can only be activated if the 

proportion of activated neighbors equals i’s threshold τ = 2/z, or 

ri/(ri+z) = 2/z         [1.3.1] 

ri = 2z/(z-2),          [1.3.2] 

If z = 4 (the lower limit), ri(4) = 4. If z = 6, ri(6) = 3. As z becomes indefinitely large (as a 

multiple of 2), r approaches 2, but since ri is an integer, it follows that 

ri(z) = 3 for z � 6.         [1.3.3] 

Keeping in mind that the probability of forming an effective bridge of width 4 is smaller 

than for a bridge of width 3, we simplify the proof by assuming ri = 3 for all z � 4. 

 For a neighbor j of i to become activated, given activation of i,  

(rj+1)/(rj+z) = 2/z        [1.3.4] 

rj = z/(z-2),          [1.3.5] 

If z = 4, rj = 2. As z becomes indefinitely large (as a multiple of 2), rj approaches 1, but 

since rj is an integer, it follows that 

rj = 2          [1.3.6] 

Thus, for any z � 4, 2 ties are needed from A to activated i’s neighbor j (who then has z+2 

neighbors, of whom 3 are activated including i). Given activation of both i and j, their 

shared neighbor k will have two out of z activated neighbors and will also become 

activated, and so on. Hence, for τ = 2/z, the number of nodes outside A that must be 
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activated to form an effective bridge to a node that is not tied to A is τz = 2 nodes, and the 

number of random ties R = 3+2 = 5. 

 The remainder of the proof is identical to Theorem 1 but the probabilities of an 

effective bridge are even smaller, given that 5 ties are now required instead of 3. 

 

Corollary 1.3. For a ring lattice of size N, degree z � 4, and threshold τ = 2, allowing 

network density to increase while adding the minimum number of random ties to bridge 

across the ring, the probability of forming an effective bridge for an uncontested 

contagion approaches 0 for N >> z. 

Proof 

 The proof is identical to Theorem 1. Although density is allowed to increase as 

random ties are added, it remains the case that R = 3 since the contagion is uncontested, 

and thus τ = 2, regardless of the number of neighbors. 

 

Theorem 2. For a ring lattice identical to that for Theorem 1 (including constant density 

and uncontested contagion), if random ties fail to create an effective bridge, each 

additional random tie reduces the number of nodes that a cascade can be expected to 

reach. 

Proof 

 Let R be the minimum number of random ties required for an effective bridge 

between activated and unactivated nodes. From Theorem 1, the probability that these ties 

create an ineffective bridge approaches unity as N increases and N >> z and N >> A. 

Suppose the bridge is ineffective and a random tie happens to link two nodes, i and j, 
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each with z/2 neighbors in S and on opposite ends of S. Both i and j then each have z/2 

activated neighbors in S. In order to hold density constant, the addition of the ij tie 

requires that one of the existing ties to either i or j must be deleted.  

 Suppose the break occurs between i and one of its activated neighbors in S, such 

that i cannot be activated. (Note that the reasoning is identical if the break occurs on a tie 

to j rather than i.)The cascade can then only proceed beyond i if a second random tie is 

formed, either to i or to i’s closest unactivated neighbor k (see Figure 2). Both i and k 

have one activated regular neighbor, and the addition of a random tie to a second 

activated neighbor allows the cascade to proceed. 

 Suppose instead the break occurs between i and k, such that k cannot be activated. 

The cascade can then only proceed beyond k if a second random tie is formed, either to k 

or to k’s closest unactivated neighbor l. Both k and l will already have one activated 

regular neighbor (since k and i share one activated neighbor and l remains tied to i), and 

the addition of a random tie to a second activated neighbor allows the cascade to proceed.  

 However, a random tie anywhere else will not circumvent the broken ik tie, 

because a single activated neighbor is not sufficient. This applies as well if the break 

occurs before the cascade reaches i. Regardless of the location of the break (before or 

after i), the repair tie must be formed between an activated node and a node that is within 

z/2 nodes of the break. The probability of such a repair is simply the number of possible 

repairs (z/2) divided by the number of dyads (N(N-1)/2), or z/(N(N-1). The probability 

approaches zero as N increases and N >> z. 

 A random tie between i and j is the worst-case scenario for the effect of random 

rewiring on the extent of propagation. More generally, the expected effect is determined 
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by the longest tie that is randomly created in R tries, where length is measured as the 

number of nodes from one end to the other, not passing through S. Each node has 1/N 

chance of being selected in each of R tries. For a ring lattice with any degree z and size 

N >> z, the length of the longest tie can be expected to be approximately RN/(R+1). For 

R = 3, cascades can be expected to reach only about N/4 nodes, for any N and z with 

N >> z.  

   

Corollary 2.1. For a ring lattice identical to that for Theorem 1 except that network 

density increases as random ties are added, and if random ties fail to create an effective 

bridge, each additional random tie has no effect on the number of nodes that a cascade 

can be expected to reach. 

Proof 

 Corollary 2.1 shows that there is no disruption of local propagation if the 

contagion is uncontested and the addition of random ties leads to increased density rather 

than deleted ties. Suppose a random tie happens to link two nodes, i and j, whose 

immediate neighbors are in S and on opposite ends of S. Both i and j then each have two 

activated neighbors in S. With the addition of a random tie between i and j, these nodes 

now each have z+1 neighbors, of whom two (the two neighbors within S) are activated. 

In the absence of countervailing influence by unactivated nodes, both i and j can be 

activated, and the cascade can escape the seed neighborhood. 
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Corollary 2.2. For a ring lattice identical to that for Theorem 1 except that the contagion 

is contested, if random ties fail to create an effective bridge, each additional random tie 

reduces the number of nodes that a cascade can be expected to reach. 

Proof 

 The proof is identical to that for Theorem 2. It makes no difference whether 

τ = 2/z or τ = 2 when density is held constant as random ties are formed. 

 

Corollary 2.3 For a ring lattice identical to that for Theorem 1 except that network 

density increases as random ties are added and the contagion is contested, if random ties 

fail to create an effective bridge, each additional random tie reduces the number of nodes 

that a cascade can be expected to reach. 

Proof 

 The proof is identical to that for Theorem 2, except that disruption of local 

propagation cannot be repaired by formation of a random tie to k or l. Let R be the 

minimum number of random ties required for an effective bridge between activated and 

unactivated nodes. From Theorem 1, the probability that these ties create an ineffective 

bridge approaches unity as N increases and N >> z and N >> A. Suppose the bridge is 

ineffective and a random tie happens to link two nodes, i and j, each with z/2 neighbors in 

S and on opposite ends of S. Both i and j then each have z/2 activated neighbors in S. 

With the addition of a random tie between i and j, i and j now each have z+1 neighbors, 

of whom z/2 are activated. Since (z/2)/(z+1) < 2/z, neither randomly connected node can 

be activated, and the cascade is unable to escape the seed neighborhood.  
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 Now suppose, in addition to the ij tie, another random tie is created from S to k, 

the neighbor closest to i along the regular lattice and not in S. Since i lies between S and 

k, k is one node farther from S than is i and thus k has one less neighbor in S than does i, 

prior to the addition of a random tie to k. However, the random tie from S to k gives k one 

additional activated neighbor, bringing the total to z/2. Node k now has z+1 neighbors, of 

whom z/2 are activated. Since (z/2)/(z+1) < 2/z, the random tie to k does not allow the 

cascade to escape the ij block. The remainder of the proof is identical to that for Theorem 

2. 
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Figure 1. Many social diffusion processes involve complex contagions, whether 

contested or uncontested. All simple contagions are necessarily uncontested. 

 

Figure 2. Simple and complex contagions on a ring lattice with z = 4. Solid nodes 

are activated. An increase in thresholds from one to two triples the width of the bridge 

needed from s to k via i and j, from wks(1) = 1 to wks(2) = 3. Dashed lines indicate 

deleted ties, which have no effect on the simple contagion but prevent leftward 

propagation of the complex contagion. 

 

Figure 3. Random ties increase the rate of simple contagions (N = 2000, averaged 

over 100 realizations). The dashed line shows the average number of nodes activated per 

timestep t in a regular lattice (p = 0). For p = 0.1 (solid line), the growth of the activated 

nodes is steeply concave, activating the entire network in many fewer timesteps. The 

inset shows the change in the rate of propagation as the network is rewired. With 

increasing numbers of random ties, the timesteps required for the contagion to saturate 

the network decreases until, at p≈ 0.1, the rate of propagation is approximately that of a 

random network. 

 

Figure 4. Random ties inhibit minimally complex contagions (τ = 2, τ = 2/z, N = 2000, 

averaged over 100 realizations). Dotted lines indicate contested contagions and solid lines 

indicate uncontested contagions in a small world network (p = 0.1), with lighter lines for 

constant density and heavier lines for increasing density. The solid line with circles 

provides a benchmark (p = 0). With constant density, both contested and uncontested 
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contagions initially spread more slowly on a randomized network, but network saturation 

requires slightly fewer timesteps. With increasing density, contested contagions also 

spread more slowly on a randomized network than on a regular lattice, while uncontested 

contagions grow much more rapidly on the randomized networks. The inset shows the 

average number of timesteps to saturate the network. As the network is rewired, there is a 

slight increase in the propagation rates of minimally complex contagions with constant 

density. However, with increasing numbers of random ties, propagation rates steeply 

increase toward infinity. For increasing density, contested contagions propagate more 

slowly on randomized networks then on a regular lattice, while rates for uncontested 

contagions increase monotonically with p. 

 

Figure 5. Random ties reduce the frequency of minimally complex contagions (τ = 2, 

τ = 2/z, N = 2000, averaged over 100 realizations). The frequency of cascades for 

contested contagions (dotted line) and uncontested contagions (solid line) is unaffected 

for low values of p. However, as p increases above 0.1, the introduction of random ties 

reduces the width of local bridges, and the frequency of cascades drops off sharply. 

Above p = 0.13, cascades are entirely inhibited. 

 

Figure 6. Effects of random ties become more pronounced as thresholds increase 

(τ = 3, N = 2000, averaged over 100 realizations). The rate and frequency of complex 

contested contagions (dotted line) and uncontested contagions (solid line) begin to 

deteriorate rapidly at lower levels of randomization as compared with Figures 3 and 4 (at 

around p = 0.03, compared to p = 0.1 with τ = 2). 
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Figure 7. Perturbation inhibits propagation of complex contagions, even when 

targeted (τ = 0.25, N = 2000, averaged over 100 realizations). For β  = 0 (solid line) ties 

are added randomly, and the results show the expected steep decline in cascade 

frequencies as p increases. For β >0, the evolution of network topology is not random. 

Instead, new ties are “targeted” to form closed triads, as predicted by structural balance 

theory. For β  = 1 (dotted line), there is a decrease in cascade frequency with increasing p, 

but approximately 50% of cascades succeed even with p = 1. However, for β  = 0.9 (dark 

dotted line) cascade frequency goes to zero as p approaches 1, and for β  = 0.8 (dashed 

line) we observe only a slight improvement compared to β  = 0. 

 

Figure 8. Perturbation promotes propagation of hybrid contagions (τ = 2, N = 2000, 

averaged over 100 realizations). For 5% vulnerable nodes (solid line), we observe a 

gradual decline from high cascade frequencies to zero cascades for p > 0.1. The inset 

shows that a decrease in timesteps for small values of p is followed by a steep increase 

above p = 0.1. For 10% vulnerable nodes (solid line with circles), cascade frequencies 

remain positive but drop markedly as p approaches 1, and timesteps level off for p > 0.3. 

For 15% vulnerable nodes (dotted line), p has little effect on cascade frequency, except 

for a small dip as p approaches 1. Timesteps required for propagation increase only 

slightly as p approaches 1. For 25% vulnerable nodes (dashed line), there is no effect of 

random ties on cascade frequencies, and increasing p does not reduce propagation rates. 



 58 

 

Figure 1 

 

 

Contagion 

Simple Complex 

Disease 

Information 

Uncontested Contested 

Urban Legends 

Pure Jointness 

Costly Technology 

Emergent Norms 

Partial Jointness 

Controversial Tech. 



 59 

 

Figure 2 

 

 

 

 



 60 

 

Figure 3 

 

 



 61 

 

Figure 4 

 

 



 62 

 

Figure 5 

 

 



 63 

 

Figure 6 

 

 



 64 

 

Figure 7 

 

 

 



 65 

 

Figure 8 

 


